Samuel Stevens
Use threads for concurrency
a622fd0
import functools
import io
import json
import logging
import math
import pathlib
import typing
import beartype
import einops
import einops.layers.torch
import gradio as gr
import matplotlib
import numpy as np
import saev.activations
import saev.config
import saev.nn
import saev.visuals
import torch
from jaxtyping import Bool, Float, Int, UInt8, jaxtyped
from PIL import Image, ImageDraw
from torch import Tensor
import constants
import data
import modeling
logger = logging.getLogger("app.py")
####################
# Global Constants #
####################
MAX_FREQ = 3e-2
"""Maximum frequency. Any feature that fires more than this is ignored."""
RESIZE_SIZE = 512
"""Resize shorter size to this size in pixels."""
CROP_SIZE = (448, 448)
"""Crop size in pixels."""
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
"""Hardware accelerator, if any."""
CWD = pathlib.Path(".")
"""Current working directory."""
N_SAE_LATENTS = 4
"""Number of SAE latents to show."""
N_LATENT_EXAMPLES = 4
"""Number of examples per SAE latent to show."""
COLORMAP = matplotlib.colormaps.get_cmap("plasma")
@beartype.beartype
class Example(typing.TypedDict):
"""Represents an example image and its associated label.
Used to store examples of SAE latent activations for visualization.
"""
orig_url: str
"""The URL or path to access the original example image."""
highlighted_url: typing.NotRequired[str]
"""The URL or path to access the SAE-highlighted image."""
seg_url: str
"""Base64-encoded version of the colored segmentation map."""
classes: list[int]
"""Unique list of all classes in the seg_url."""
@beartype.beartype
class SaeActivation(typing.TypedDict):
"""Represents the activation pattern of a single SAE latent across patches.
This captures how strongly a particular SAE latent fires on different patches of an input image.
"""
latent: int
"""The index of the SAE latent being measured."""
highlighted_url: str
"""The image with the colormaps applied."""
activations: list[float]
"""The activation values of this latent across different patches. Each value represents how strongly this latent fired on a particular patch."""
examples: list[Example]
"""Top examples for this latent."""
##########
# Models #
##########
@functools.cache
def load_sae(device: str) -> saev.nn.SparseAutoencoder:
"""
Loads a sparse autoencoder from disk.
"""
sae_ckpt_fpath = CWD / "assets" / "sae.pt"
sae = saev.nn.load(str(sae_ckpt_fpath))
sae.to(device).eval()
return sae
@functools.cache
def load_clf() -> torch.nn.Module:
# /home/stevens.994/projects/saev/checkpoints/contrib/semseg/lr_0_001__wd_0_001/model_step8000.pt
head_ckpt_fpath = CWD / "assets" / "clf.pt"
with open(head_ckpt_fpath, "rb") as fd:
kwargs = json.loads(fd.readline().decode())
buffer = io.BytesIO(fd.read())
model = torch.nn.Linear(**kwargs)
state_dict = torch.load(buffer, weights_only=True, map_location=DEVICE)
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
return model
####################
# Global Variables #
####################
@beartype.beartype
def load_tensor(path: str | pathlib.Path) -> Tensor:
return torch.load(path, weights_only=True, map_location="cpu")
@functools.cache
def load_tensors() -> tuple[
Int[Tensor, "d_sae k"],
UInt8[Tensor, "d_sae k n_patches"],
Bool[Tensor, " d_sae"],
]:
"""
Loads the tensors for the SAE for ADE20K.
"""
top_img_i = load_tensor(CWD / "assets" / "top_img_i.pt")
top_values = load_tensor(CWD / "assets" / "top_values_uint8.pt")
sparsity = load_tensor(CWD / "assets" / "sparsity.pt")
mask = torch.ones(sparsity.shape, dtype=bool)
mask = mask & (sparsity < MAX_FREQ)
return top_img_i, top_values, mask
###########
# Imaging #
###########
@jaxtyped(typechecker=beartype.beartype)
def add_highlights(
img: Image.Image,
patches: Float[np.ndarray, " n_patches"],
*,
upper: int | None = None,
opacity: float = 0.9,
) -> Image.Image:
if not len(patches):
return img
iw_np, ih_np = int(math.sqrt(len(patches))), int(math.sqrt(len(patches)))
iw_px, ih_px = img.size
pw_px, ph_px = iw_px // iw_np, ih_px // ih_np
assert iw_np * ih_np == len(patches)
# Create a transparent overlay
overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
colors = np.zeros((len(patches), 3), dtype=np.uint8)
colors[:, 0] = ((patches / (upper + 1e-9)) * 255).astype(np.uint8)
# Using semi-transparent red (255, 0, 0, alpha)
for p, (val, color) in enumerate(zip(patches, colors)):
assert upper is not None
val /= upper + 1e-9
x_np, y_np = p % iw_np, p // ih_np
draw.rectangle(
[
(x_np * pw_px, y_np * ph_px),
(x_np * pw_px + pw_px, y_np * ph_px + ph_px),
],
fill=(*color, int(opacity * val * 255)),
)
# Composite the original image and the overlay
return Image.alpha_composite(img.convert("RGBA"), overlay)
#######################
# Inference Functions #
#######################
@beartype.beartype
def get_img(i: int) -> Example:
img_sized = data.to_sized(data.get_img(i))
seg_sized = data.to_sized(data.get_seg(i))
seg_u8_sized = data.to_u8(seg_sized)
seg_img_sized = data.u8_to_img(seg_u8_sized)
return {
"orig_url": data.img_to_base64(img_sized),
"seg_url": data.img_to_base64(seg_img_sized),
"classes": data.to_classes(seg_u8_sized),
}
@beartype.beartype
@torch.inference_mode
def get_sae_latents(img: Image.Image, patches: list[int]) -> list[SaeActivation]:
"""
Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
"""
if not patches:
return []
split_vit, vit_transform = modeling.load_vit(DEVICE)
sae = load_sae(DEVICE)
x_BCWH = vit_transform(img.convert("RGB"))[None, ...].to(DEVICE)
x_BPD = split_vit.forward_start(x_BCWH)
x_BPD = (
x_BPD.clamp(-1e-5, 1e5) - (constants.DINOV2_IMAGENET1K_MEAN).to(DEVICE)
) / constants.DINOV2_IMAGENET1K_SCALAR
# Need to pick out the right patches
# + 1 + 4 for 1 [CLS] token and 4 register tokens
x_PD = x_BPD[0, [p + 1 + 4 for p in patches]]
_, f_x_PS, _ = sae(x_PD)
f_x_S = einops.reduce(f_x_PS, "patches n_latents -> n_latents", "sum")
logger.info("Got SAE activations.")
top_img_i, top_values, mask = load_tensors()
latents = torch.argsort(f_x_S, descending=True).cpu()
latents = latents[mask[latents]][:N_SAE_LATENTS].tolist()
sae_activations = []
for latent in latents:
pairs, seen_i_im = [], set()
for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
if i_im in seen_i_im:
continue
pairs.append((i_im, values_p))
seen_i_im.add(i_im)
if len(pairs) >= N_LATENT_EXAMPLES:
break
# How to scale values.
upper = None
if top_values[latent].numel() > 0:
upper = top_values[latent].max().item()
examples = []
for i_im, values_p in pairs:
seg_sized = data.to_sized(data.get_seg(i_im))
img_sized = data.to_sized(data.get_img(i_im))
seg_u8_sized = data.to_u8(seg_sized)
seg_img_sized = data.u8_to_img(seg_u8_sized)
highlighted_sized = add_highlights(
img_sized, values_p.float().numpy(), upper=upper
)
examples.append({
"orig_url": data.img_to_base64(img_sized),
"highlighted_url": data.img_to_base64(highlighted_sized),
"seg_url": data.img_to_base64(seg_img_sized),
"classes": data.to_classes(seg_u8_sized),
})
sae_activations.append({
"latent": latent,
"examples": examples,
})
return sae_activations
@beartype.beartype
@torch.inference_mode
def get_orig_preds(img: Image.Image) -> Example:
split_vit, vit_transform = modeling.load_vit(DEVICE)
x_BCWH = vit_transform(img.convert("RGB"))[None, ...].to(DEVICE)
x_BPD = split_vit.forward_start(x_BCWH)
x_BPD = split_vit.forward_end(x_BPD)
x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16)
clf = load_clf()
logits_WHC = clf(x_WHD)
pred_WH = logits_WHC[:, :, 1:].argmax(axis=-1) + 1
return {
"orig_url": data.img_to_base64(data.to_sized(img)),
"seg_url": data.img_to_base64(data.u8_to_overlay(pred_WH, img)),
"classes": data.to_classes(pred_WH),
}
@beartype.beartype
def unscaled(x: float, max_obs: float | int) -> float:
"""Scale from [-10, 10] to [10 * -max_obs, 10 * max_obs]."""
return map_range(x, (-10.0, 10.0), (-10.0 * max_obs, 10.0 * max_obs))
@beartype.beartype
def map_range(
x: float,
domain: tuple[float | int, float | int],
range: tuple[float | int, float | int],
):
a, b = domain
c, d = range
if not (a <= x <= b):
raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
return c + (x - a) * (d - c) / (b - a)
@beartype.beartype
@torch.inference_mode
def get_mod_preds(img: Image.Image, latents: dict[str, int | float]) -> Example:
latents = {int(k): float(v) for k, v in latents.items()}
split_vit, vit_transform = modeling.load_vit(DEVICE)
sae = load_sae(DEVICE)
_, top_values, _ = load_tensors()
clf = load_clf()
x_BCWH = vit_transform(img.convert("RGB"))[None, ...].to(DEVICE)
x_BPD = split_vit.forward_start(x_BCWH)
x_hat_BPD, f_x_BPS, _ = sae(x_BPD)
err_BPD = x_BPD - x_hat_BPD
values = torch.tensor(
[
unscaled(float(value), top_values[latent].max().item())
for latent, value in latents.items()
],
device=DEVICE,
)
f_x_BPS[..., torch.tensor(list(latents.keys()), device=DEVICE)] = values
# Reproduce the SAE forward pass after f_x
mod_x_hat_BPD = (
einops.einsum(
f_x_BPS,
sae.W_dec,
"batch patches d_sae, d_sae d_vit -> batch patches d_vit",
)
+ sae.b_dec
)
mod_BPD = err_BPD + mod_x_hat_BPD
mod_BPD = split_vit.forward_end(mod_BPD)
mod_WHD = einops.rearrange(mod_BPD, "() (w h) dim -> w h dim", w=16, h=16)
logits_WHC = clf(mod_WHD)
pred_WH = logits_WHC[:, :, 1:].argmax(axis=-1) + 1
# pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16)
return {
"orig_url": data.img_to_base64(data.to_sized(img)),
"seg_url": data.img_to_base64(data.u8_to_overlay(pred_WH, img)),
"classes": data.to_classes(pred_WH),
}
with gr.Blocks() as demo:
###########
# get-img #
###########
# Inputs
img_number = gr.Number(label="Example Index")
# Outputs
get_img_out = gr.JSON(label="get_img_out", value={})
get_input_img_btn = gr.Button(value="Get Input Image")
get_input_img_btn.click(
get_img,
inputs=[img_number],
outputs=[get_img_out],
api_name="get-img",
concurrency_limit=10,
)
###################
# get-sae-latents #
###################
# Inputs
patches_json = gr.JSON(label="Patches", value=[])
input_img = gr.Image(
label="Input Image",
sources=["upload", "clipboard"],
type="pil",
interactive=True,
)
# Outputs
get_sae_latents_out = gr.JSON(label="get_sae_latents_out", value=[])
get_sae_latents_btn = gr.Button(value="Get SAE Latents")
get_sae_latents_btn.click(
get_sae_latents,
inputs=[input_img, patches_json],
outputs=[get_sae_latents_out],
api_name="get-sae-latents",
)
##################
# get-orig-preds #
##################
# Outputs
get_orig_preds_out = gr.JSON(label="get_orig_preds_out", value=[])
get_pred_labels_btn = gr.Button(value="Get Predictions")
get_pred_labels_btn.click(
get_orig_preds,
inputs=[input_img],
outputs=[get_orig_preds_out],
api_name="get-orig-preds",
)
#################
# get-mod-preds #
#################
# Inputs
latents_json = gr.JSON(label="Modified Latents", value={})
# Outputs
get_mod_preds_out = gr.JSON(label="get_mod_preds_out", value=[])
get_pred_labels_btn = gr.Button(value="Get Predictions")
get_pred_labels_btn.click(
get_mod_preds,
inputs=[input_img, latents_json],
outputs=[get_mod_preds_out],
api_name="get-mod-preds",
)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=2, max_size=32)
demo.launch()