File size: 12,880 Bytes
e508563
 
 
 
699b9c3
e508563
dc20bdb
 
 
 
 
 
5db6fa7
699b9c3
e508563
 
 
 
dc20bdb
699b9c3
 
dc20bdb
 
e508563
 
699b9c3
dc20bdb
e508563
dc20bdb
 
 
 
 
 
5db6fa7
dc20bdb
 
 
 
 
 
 
 
699b9c3
dc20bdb
 
e508563
 
dc20bdb
5db6fa7
699b9c3
 
 
 
dc20bdb
5db6fa7
 
af47b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc20bdb
 
 
 
 
 
699b9c3
e508563
 
 
 
 
 
 
dc20bdb
 
e508563
 
 
 
 
 
 
dc20bdb
e508563
699b9c3
e508563
699b9c3
e508563
dc20bdb
 
 
 
 
 
 
e508563
 
 
 
dc20bdb
699b9c3
 
 
 
 
 
 
 
 
 
 
 
dc20bdb
699b9c3
 
dc20bdb
699b9c3
dc20bdb
 
af47b42
 
 
dc20bdb
 
699b9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5db6fa7
 
 
699b9c3
5db6fa7
699b9c3
 
 
 
 
 
 
 
5db6fa7
699b9c3
dc20bdb
699b9c3
 
dc20bdb
 
 
 
 
 
 
 
af47b42
c4ee5c3
0ab58fa
e508563
 
dc20bdb
c4ee5c3
 
 
af47b42
c4ee5c3
dc20bdb
 
 
 
af47b42
dc20bdb
 
 
 
 
 
699b9c3
 
dc20bdb
af47b42
dc20bdb
699b9c3
 
 
e508563
dc20bdb
699b9c3
 
 
 
e508563
699b9c3
 
dc20bdb
699b9c3
dc20bdb
 
699b9c3
dc20bdb
699b9c3
dc20bdb
699b9c3
dc20bdb
 
 
 
699b9c3
dc20bdb
699b9c3
 
dc20bdb
 
 
 
 
 
699b9c3
 
 
c4ee5c3
699b9c3
 
 
dc20bdb
699b9c3
 
 
 
 
 
 
 
af47b42
699b9c3
dc20bdb
699b9c3
 
 
 
dc20bdb
699b9c3
dc20bdb
 
af47b42
dc20bdb
af47b42
c4ee5c3
dc20bdb
af47b42
dc20bdb
c4ee5c3
 
dc20bdb
 
 
c4ee5c3
 
dc20bdb
5db6fa7
c4ee5c3
 
5db6fa7
af47b42
c4ee5c3
dc20bdb
 
 
6c9f92c
dc20bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852b07a
dc20bdb
af47b42
6c9f92c
dc20bdb
6c9f92c
 
 
 
 
af47b42
6c9f92c
dc20bdb
 
 
 
 
 
 
6c9f92c
dc20bdb
6c9f92c
dc20bdb
6c9f92c
dc20bdb
 
6c9f92c
dc20bdb
 
 
 
 
 
 
6c9f92c
dc20bdb
6c9f92c
 
dc20bdb
6c9f92c
5db6fa7
6c9f92c
 
 
5db6fa7
af47b42
6c9f92c
dc20bdb
 
 
c4ee5c3
 
 
 
 
 
dc20bdb
c4ee5c3
 
dc20bdb
c4ee5c3
 
a622fd0
 
 
 
 
dc20bdb
 
c4ee5c3
 
 
dc20bdb
c4ee5c3
dc20bdb
af47b42
 
 
 
 
 
c4ee5c3
 
 
 
 
 
af47b42
c4ee5c3
 
dc20bdb
 
852b07a
 
 
c4ee5c3
 
852b07a
c4ee5c3
 
 
852b07a
af47b42
852b07a
 
c4ee5c3
dc20bdb
852b07a
 
 
 
 
 
 
 
 
 
 
 
 
af47b42
852b07a
 
 
dc20bdb
 
a622fd0
dc20bdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import functools
import io
import json
import logging
import math
import pathlib
import typing

import beartype
import einops
import einops.layers.torch
import gradio as gr
import matplotlib
import numpy as np
import saev.activations
import saev.config
import saev.nn
import saev.visuals
import torch
from jaxtyping import Bool, Float, Int, UInt8, jaxtyped
from PIL import Image, ImageDraw
from torch import Tensor

import constants
import data
import modeling

logger = logging.getLogger("app.py")

####################
# Global Constants #
####################


MAX_FREQ = 3e-2
"""Maximum frequency. Any feature that fires more than this is ignored."""

RESIZE_SIZE = 512
"""Resize shorter size to this size in pixels."""

CROP_SIZE = (448, 448)
"""Crop size in pixels."""

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
"""Hardware accelerator, if any."""

CWD = pathlib.Path(".")
"""Current working directory."""

N_SAE_LATENTS = 4
"""Number of SAE latents to show."""

N_LATENT_EXAMPLES = 4
"""Number of examples per SAE latent to show."""

COLORMAP = matplotlib.colormaps.get_cmap("plasma")


@beartype.beartype
class Example(typing.TypedDict):
    """Represents an example image and its associated label.

    Used to store examples of SAE latent activations for visualization.
    """

    orig_url: str
    """The URL or path to access the original example image."""
    highlighted_url: typing.NotRequired[str]
    """The URL or path to access the SAE-highlighted image."""
    seg_url: str
    """Base64-encoded version of the colored segmentation map."""
    classes: list[int]
    """Unique list of all classes in the seg_url."""


@beartype.beartype
class SaeActivation(typing.TypedDict):
    """Represents the activation pattern of a single SAE latent across patches.

    This captures how strongly a particular SAE latent fires on different patches of an input image.
    """

    latent: int
    """The index of the SAE latent being measured."""

    highlighted_url: str
    """The image with the colormaps applied."""

    activations: list[float]
    """The activation values of this latent across different patches. Each value represents how strongly this latent fired on a particular patch."""

    examples: list[Example]
    """Top examples for this latent."""


##########
# Models #
##########


@functools.cache
def load_sae(device: str) -> saev.nn.SparseAutoencoder:
    """
    Loads a sparse autoencoder from disk.
    """
    sae_ckpt_fpath = CWD / "assets" / "sae.pt"
    sae = saev.nn.load(str(sae_ckpt_fpath))
    sae.to(device).eval()
    return sae


@functools.cache
def load_clf() -> torch.nn.Module:
    # /home/stevens.994/projects/saev/checkpoints/contrib/semseg/lr_0_001__wd_0_001/model_step8000.pt
    head_ckpt_fpath = CWD / "assets" / "clf.pt"
    with open(head_ckpt_fpath, "rb") as fd:
        kwargs = json.loads(fd.readline().decode())
        buffer = io.BytesIO(fd.read())

    model = torch.nn.Linear(**kwargs)
    state_dict = torch.load(buffer, weights_only=True, map_location=DEVICE)
    model.load_state_dict(state_dict)
    model = model.to(DEVICE).eval()
    return model


####################
# Global Variables #
####################


@beartype.beartype
def load_tensor(path: str | pathlib.Path) -> Tensor:
    return torch.load(path, weights_only=True, map_location="cpu")


@functools.cache
def load_tensors() -> tuple[
    Int[Tensor, "d_sae k"],
    UInt8[Tensor, "d_sae k n_patches"],
    Bool[Tensor, " d_sae"],
]:
    """
    Loads the tensors for the SAE for ADE20K.
    """
    top_img_i = load_tensor(CWD / "assets" / "top_img_i.pt")
    top_values = load_tensor(CWD / "assets" / "top_values_uint8.pt")
    sparsity = load_tensor(CWD / "assets" / "sparsity.pt")

    mask = torch.ones(sparsity.shape, dtype=bool)
    mask = mask & (sparsity < MAX_FREQ)

    return top_img_i, top_values, mask


###########
# Imaging #
###########


@jaxtyped(typechecker=beartype.beartype)
def add_highlights(
    img: Image.Image,
    patches: Float[np.ndarray, " n_patches"],
    *,
    upper: int | None = None,
    opacity: float = 0.9,
) -> Image.Image:
    if not len(patches):
        return img

    iw_np, ih_np = int(math.sqrt(len(patches))), int(math.sqrt(len(patches)))
    iw_px, ih_px = img.size
    pw_px, ph_px = iw_px // iw_np, ih_px // ih_np
    assert iw_np * ih_np == len(patches)

    # Create a transparent overlay
    overlay = Image.new("RGBA", img.size, (0, 0, 0, 0))
    draw = ImageDraw.Draw(overlay)

    colors = np.zeros((len(patches), 3), dtype=np.uint8)
    colors[:, 0] = ((patches / (upper + 1e-9)) * 255).astype(np.uint8)

    # Using semi-transparent red (255, 0, 0, alpha)
    for p, (val, color) in enumerate(zip(patches, colors)):
        assert upper is not None
        val /= upper + 1e-9
        x_np, y_np = p % iw_np, p // ih_np
        draw.rectangle(
            [
                (x_np * pw_px, y_np * ph_px),
                (x_np * pw_px + pw_px, y_np * ph_px + ph_px),
            ],
            fill=(*color, int(opacity * val * 255)),
        )

    # Composite the original image and the overlay
    return Image.alpha_composite(img.convert("RGBA"), overlay)


#######################
# Inference Functions #
#######################


@beartype.beartype
def get_img(i: int) -> Example:
    img_sized = data.to_sized(data.get_img(i))
    seg_sized = data.to_sized(data.get_seg(i))
    seg_u8_sized = data.to_u8(seg_sized)
    seg_img_sized = data.u8_to_img(seg_u8_sized)

    return {
        "orig_url": data.img_to_base64(img_sized),
        "seg_url": data.img_to_base64(seg_img_sized),
        "classes": data.to_classes(seg_u8_sized),
    }


@beartype.beartype
@torch.inference_mode
def get_sae_latents(img: Image.Image, patches: list[int]) -> list[SaeActivation]:
    """
    Given a particular cell, returns some highlighted images showing what feature fires most on this cell.
    """
    if not patches:
        return []

    split_vit, vit_transform = modeling.load_vit(DEVICE)
    sae = load_sae(DEVICE)

    x_BCWH = vit_transform(img.convert("RGB"))[None, ...].to(DEVICE)

    x_BPD = split_vit.forward_start(x_BCWH)
    x_BPD = (
        x_BPD.clamp(-1e-5, 1e5) - (constants.DINOV2_IMAGENET1K_MEAN).to(DEVICE)
    ) / constants.DINOV2_IMAGENET1K_SCALAR

    # Need to pick out the right patches
    # + 1 + 4 for 1 [CLS] token and 4 register tokens
    x_PD = x_BPD[0, [p + 1 + 4 for p in patches]]
    _, f_x_PS, _ = sae(x_PD)

    f_x_S = einops.reduce(f_x_PS, "patches n_latents -> n_latents", "sum")
    logger.info("Got SAE activations.")

    top_img_i, top_values, mask = load_tensors()

    latents = torch.argsort(f_x_S, descending=True).cpu()
    latents = latents[mask[latents]][:N_SAE_LATENTS].tolist()

    sae_activations = []
    for latent in latents:
        pairs, seen_i_im = [], set()
        for i_im, values_p in zip(top_img_i[latent].tolist(), top_values[latent]):
            if i_im in seen_i_im:
                continue

            pairs.append((i_im, values_p))
            seen_i_im.add(i_im)
            if len(pairs) >= N_LATENT_EXAMPLES:
                break

        # How to scale values.
        upper = None
        if top_values[latent].numel() > 0:
            upper = top_values[latent].max().item()

        examples = []
        for i_im, values_p in pairs:
            seg_sized = data.to_sized(data.get_seg(i_im))
            img_sized = data.to_sized(data.get_img(i_im))

            seg_u8_sized = data.to_u8(seg_sized)
            seg_img_sized = data.u8_to_img(seg_u8_sized)

            highlighted_sized = add_highlights(
                img_sized, values_p.float().numpy(), upper=upper
            )

            examples.append({
                "orig_url": data.img_to_base64(img_sized),
                "highlighted_url": data.img_to_base64(highlighted_sized),
                "seg_url": data.img_to_base64(seg_img_sized),
                "classes": data.to_classes(seg_u8_sized),
            })

        sae_activations.append({
            "latent": latent,
            "examples": examples,
        })

    return sae_activations


@beartype.beartype
@torch.inference_mode
def get_orig_preds(img: Image.Image) -> Example:
    split_vit, vit_transform = modeling.load_vit(DEVICE)

    x_BCWH = vit_transform(img.convert("RGB"))[None, ...].to(DEVICE)

    x_BPD = split_vit.forward_start(x_BCWH)
    x_BPD = split_vit.forward_end(x_BPD)

    x_WHD = einops.rearrange(x_BPD, "() (w h) dim -> w h dim", w=16, h=16)

    clf = load_clf()
    logits_WHC = clf(x_WHD)

    pred_WH = logits_WHC[:, :, 1:].argmax(axis=-1) + 1
    return {
        "orig_url": data.img_to_base64(data.to_sized(img)),
        "seg_url": data.img_to_base64(data.u8_to_overlay(pred_WH, img)),
        "classes": data.to_classes(pred_WH),
    }


@beartype.beartype
def unscaled(x: float, max_obs: float | int) -> float:
    """Scale from [-10, 10] to [10 * -max_obs, 10 * max_obs]."""
    return map_range(x, (-10.0, 10.0), (-10.0 * max_obs, 10.0 * max_obs))


@beartype.beartype
def map_range(
    x: float,
    domain: tuple[float | int, float | int],
    range: tuple[float | int, float | int],
):
    a, b = domain
    c, d = range
    if not (a <= x <= b):
        raise ValueError(f"x={x:.3f} must be in {[a, b]}.")
    return c + (x - a) * (d - c) / (b - a)


@beartype.beartype
@torch.inference_mode
def get_mod_preds(img: Image.Image, latents: dict[str, int | float]) -> Example:
    latents = {int(k): float(v) for k, v in latents.items()}

    split_vit, vit_transform = modeling.load_vit(DEVICE)
    sae = load_sae(DEVICE)
    _, top_values, _ = load_tensors()
    clf = load_clf()

    x_BCWH = vit_transform(img.convert("RGB"))[None, ...].to(DEVICE)
    x_BPD = split_vit.forward_start(x_BCWH)
    x_hat_BPD, f_x_BPS, _ = sae(x_BPD)

    err_BPD = x_BPD - x_hat_BPD

    values = torch.tensor(
        [
            unscaled(float(value), top_values[latent].max().item())
            for latent, value in latents.items()
        ],
        device=DEVICE,
    )
    f_x_BPS[..., torch.tensor(list(latents.keys()), device=DEVICE)] = values

    # Reproduce the SAE forward pass after f_x
    mod_x_hat_BPD = (
        einops.einsum(
            f_x_BPS,
            sae.W_dec,
            "batch patches d_sae, d_sae d_vit -> batch patches d_vit",
        )
        + sae.b_dec
    )
    mod_BPD = err_BPD + mod_x_hat_BPD

    mod_BPD = split_vit.forward_end(mod_BPD)
    mod_WHD = einops.rearrange(mod_BPD, "() (w h) dim -> w h dim", w=16, h=16)

    logits_WHC = clf(mod_WHD)
    pred_WH = logits_WHC[:, :, 1:].argmax(axis=-1) + 1
    # pred_WH = einops.rearrange(pred_P, "(w h) -> w h", w=16, h=16)
    return {
        "orig_url": data.img_to_base64(data.to_sized(img)),
        "seg_url": data.img_to_base64(data.u8_to_overlay(pred_WH, img)),
        "classes": data.to_classes(pred_WH),
    }


with gr.Blocks() as demo:
    ###########
    # get-img #
    ###########

    # Inputs
    img_number = gr.Number(label="Example Index")

    # Outputs
    get_img_out = gr.JSON(label="get_img_out", value={})

    get_input_img_btn = gr.Button(value="Get Input Image")
    get_input_img_btn.click(
        get_img,
        inputs=[img_number],
        outputs=[get_img_out],
        api_name="get-img",
        concurrency_limit=10,
    )

    ###################
    # get-sae-latents #
    ###################

    # Inputs
    patches_json = gr.JSON(label="Patches", value=[])
    input_img = gr.Image(
        label="Input Image",
        sources=["upload", "clipboard"],
        type="pil",
        interactive=True,
    )
    # Outputs
    get_sae_latents_out = gr.JSON(label="get_sae_latents_out", value=[])

    get_sae_latents_btn = gr.Button(value="Get SAE Latents")
    get_sae_latents_btn.click(
        get_sae_latents,
        inputs=[input_img, patches_json],
        outputs=[get_sae_latents_out],
        api_name="get-sae-latents",
    )

    ##################
    # get-orig-preds #
    ##################

    # Outputs
    get_orig_preds_out = gr.JSON(label="get_orig_preds_out", value=[])

    get_pred_labels_btn = gr.Button(value="Get Predictions")
    get_pred_labels_btn.click(
        get_orig_preds,
        inputs=[input_img],
        outputs=[get_orig_preds_out],
        api_name="get-orig-preds",
    )

    #################
    # get-mod-preds #
    #################

    # Inputs
    latents_json = gr.JSON(label="Modified Latents", value={})

    # Outputs
    get_mod_preds_out = gr.JSON(label="get_mod_preds_out", value=[])

    get_pred_labels_btn = gr.Button(value="Get Predictions")
    get_pred_labels_btn.click(
        get_mod_preds,
        inputs=[input_img, latents_json],
        outputs=[get_mod_preds_out],
        api_name="get-mod-preds",
    )

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=2, max_size=32)
    demo.launch()