Spaces:
Sleeping
Sleeping
File size: 8,114 Bytes
117edbd 0a1db48 aa2bec3 4a31251 aa2bec3 0a1db48 4a31251 0a1db48 4a31251 0a1db48 aa2bec3 6d72d65 aa2bec3 6f96a50 4a31251 aa2bec3 0c25e8c 5d008ae 4a31251 31ffc5e 0a1db48 aa2bec3 0a1db48 4a31251 31ffc5e 4a31251 31ffc5e 0a1db48 31ffc5e 4a31251 31ffc5e 0a1db48 aa2bec3 31ffc5e 0a1db48 31ffc5e 117edbd 31ffc5e 117edbd 0a1db48 31ffc5e 4a31251 aa2bec3 31ffc5e 0a1db48 31ffc5e 0a1db48 31ffc5e 0a1db48 31ffc5e 0a1db48 31ffc5e 0a1db48 c5d0599 0a1db48 aa2bec3 31ffc5e aa2bec3 0a1db48 aa2bec3 31ffc5e aa2bec3 0a1db48 aa2bec3 5d008ae 31ffc5e aa2bec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# app.py
import streamlit as st
import os
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip()
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
if not HUGGINGFACEHUB_API_TOKEN:
st.warning("Hugging Face API token not found! Please set HUGGINGFACEHUB_API_TOKEN in your .env file.")
# Initialize session state
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "history" not in st.session_state:
st.session_state.history = []
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
# PDF processing logic
def process_input(input_data):
# Initialize progress bar and status
progress_bar = st.progress(0)
status = st.empty()
# Step 1: Read PDF file in memory
status.text("Reading PDF file...")
progress_bar.progress(0.25)
pdf_reader = PdfReader(BytesIO(input_data.read()))
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
# Step 2: Split text
status.text("Splitting text into chunks...")
progress_bar.progress(0.50)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_text(documents)
# Step 3: Create embeddings
status.text("Creating embeddings...")
progress_bar.progress(0.75)
hf_embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
model_kwargs={'device': 'cpu'}
)
# Step 4: Initialize FAISS vector store
status.text("Building vector store...")
progress_bar.progress(1.0)
dimension = len(hf_embeddings.embed_query("test"))
index = faiss.IndexFlatL2(dimension)
vector_store = FAISS(
embedding_function=hf_embeddings,
index=index,
docstore=InMemoryDocstore({}),
index_to_docstore_id={}
)
# Add texts to vector store
uuids = [str(uuid.uuid4()) for _ in texts]
vector_store.add_texts(texts, ids=uuids)
# Complete processing
status.text("Processing complete!")
return vector_store
# Question-answering logic
def answer_question(vectorstore, query):
if not HUGGINGFACEHUB_API_TOKEN:
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.7, "max_length": 512},
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
prompt_template = PromptTemplate(
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
input_variables=["context", "question"]
)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
result = qa_chain({"query": query})
return result["result"].split("Answer:")[-1].strip()
# Sidebar with BSNL logo and authentication
with st.sidebar:
try:
st.image("bsnl_logo.png", width=200)
except Exception:
st.warning("BSNL logo not found.")
st.header("RAG Control Panel")
api_key_input = st.text_input("Enter RAG Access Key", type="password")
# Blue authenticate button style
st.markdown("""
<style>
.auth-button button {
background-color: #007BFF !important;
color: white !important;
font-weight: bold;
border-radius: 8px;
padding: 10px 20px;
border: none;
transition: all 0.3s ease;
width: 100%;
}
.auth-button button:hover {
background-color: #0056b3 !important;
transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)
with st.container():
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
if st.button("Authenticate"):
if api_key_input == RAG_ACCESS_KEY and RAG_ACCESS_KEY is not None:
st.session_state.authenticated = True
st.success("Authentication successful!")
else:
st.error("Invalid API key.")
st.markdown('</div>', unsafe_allow_html=True)
if st.session_state.authenticated:
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
if st.button("Process File") and input_data is not None:
try:
vector_store = process_input(input_data)
st.session_state.vectorstore = vector_store
st.success("File processed successfully. You can now ask questions.")
except PermissionError as e:
st.error(f"File upload failed: Permission error - {str(e)}. Check file system access.")
except OSError as e:
st.error(f"File upload failed: OS error - {str(e)}. Check server configuration.")
except Exception as e:
st.error(f"File upload failed: {str(e)} (Exception type: {type(e).__name__}). Please try again or check server logs.")
st.subheader("Chat History")
for i, (q, a) in enumerate(st.session_state.history):
st.write(f"**Q{i+1}:** {q}")
st.write(f"**A{i+1}:** {a}")
st.markdown("---")
# Main app UI
def main():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
.stApp {
background-color: #FFFFFF;
font-family: 'Roboto', sans-serif;
color: #333333;
}
.stTextInput > div > div > input {
background-color: #FFFFFF;
color: #333333;
border-radius: 8px;
border: 1px solid #007BFF;
padding: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.stButton > button {
background-color: #007BFF;
color: white;
border-radius: 8px;
padding: 10px 20px;
border: none;
transition: all 0.3s ease;
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
}
.stButton > button:hover {
background-color: #0056b3;
transform: scale(1.05);
}
.stSidebar {
background-color: #F5F5F5;
padding: 20px;
border-right: 2px solid #007BFF;
}
</style>
""", unsafe_allow_html=True)
st.title("RAG Q&A App with Mistral AI")
st.markdown("Welcome to the BSNL RAG App! Upload a PDF file and ask questions.", unsafe_allow_html=True)
if not st.session_state.authenticated:
st.warning("Please authenticate using the sidebar.")
return
if st.session_state.vectorstore is None:
st.info("Please upload and process a PDF file.")
return
query = st.text_input("Enter your question:")
if st.button("Submit") and query:
with st.spinner("Generating answer..."):
try:
answer = answer_question(st.session_state.vectorstore, query)
st.session_state.history.append((query, answer))
st.write("**Answer:**", answer)
except Exception as e:
st.error(f"Error generating answer: {str(e)}")
if __name__ == "__main__":
main()
|