Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,60 +27,83 @@ if "history" not in st.session_state:
|
|
| 27 |
if "authenticated" not in st.session_state:
|
| 28 |
st.session_state.authenticated = False
|
| 29 |
|
| 30 |
-
# Sidebar
|
| 31 |
with st.sidebar:
|
| 32 |
try:
|
| 33 |
st.image("bsnl_logo.png", width=200)
|
| 34 |
except FileNotFoundError:
|
| 35 |
-
st.warning("
|
| 36 |
|
| 37 |
st.header("RAG Control Panel")
|
| 38 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
if st.session_state.authenticated:
|
| 48 |
-
input_data = st.file_uploader("Upload PDF file", type=["pdf"])
|
| 49 |
-
|
| 50 |
-
if input_data:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
# Chat History
|
| 67 |
-
st.subheader("Chat History")
|
| 68 |
-
for i, (q, a) in enumerate(st.session_state.history):
|
| 69 |
-
st.write(f"**Q{i+1}:** {q}")
|
| 70 |
-
st.write(f"**A{i+1}:** {a}")
|
| 71 |
-
st.markdown("---")
|
| 72 |
-
|
| 73 |
-
# Main area
|
| 74 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
st.title("RAG Q&A App with Mistral AI")
|
| 76 |
-
st.markdown("Welcome to the BSNL RAG App
|
| 77 |
|
| 78 |
if not st.session_state.authenticated:
|
| 79 |
-
st.warning("Please authenticate using
|
| 80 |
return
|
| 81 |
|
| 82 |
if st.session_state.vectorstore is None:
|
| 83 |
-
st.info("Please upload and process a PDF file
|
| 84 |
return
|
| 85 |
|
| 86 |
query = st.text_input("Enter your question:")
|
|
@@ -91,46 +114,44 @@ def main():
|
|
| 91 |
st.session_state.history.append((query, answer))
|
| 92 |
st.write("**Answer:**", answer)
|
| 93 |
except Exception as e:
|
| 94 |
-
st.error(f"
|
| 95 |
|
|
|
|
| 96 |
def process_input(input_data):
|
| 97 |
os.makedirs("vectorstore", exist_ok=True)
|
| 98 |
os.chmod("vectorstore", 0o777)
|
| 99 |
|
| 100 |
progress_bar = st.progress(0)
|
| 101 |
-
status = st.status("Processing PDF...", expanded=True)
|
| 102 |
|
| 103 |
status.update(label="Reading PDF file...")
|
| 104 |
progress_bar.progress(0.2)
|
| 105 |
-
|
| 106 |
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
| 107 |
-
documents = "".join(page.extract_text() or "" for page in pdf_reader.pages)
|
| 108 |
|
| 109 |
status.update(label="Splitting text...")
|
| 110 |
progress_bar.progress(0.4)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
texts = splitter.split_text(documents)
|
| 114 |
|
| 115 |
status.update(label="Creating embeddings...")
|
| 116 |
progress_bar.progress(0.6)
|
| 117 |
-
|
| 118 |
-
embeddings = HuggingFaceEmbeddings(
|
| 119 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
| 120 |
-
model_kwargs={
|
| 121 |
)
|
| 122 |
|
| 123 |
-
status.update(label="Building
|
| 124 |
progress_bar.progress(0.8)
|
| 125 |
-
|
| 126 |
-
dimension = len(embeddings.embed_query("sample text"))
|
| 127 |
index = faiss.IndexFlatL2(dimension)
|
| 128 |
vector_store = FAISS(
|
| 129 |
-
embedding_function=
|
| 130 |
index=index,
|
| 131 |
docstore=InMemoryDocstore({}),
|
| 132 |
index_to_docstore_id={}
|
| 133 |
)
|
|
|
|
| 134 |
uuids = [str(uuid.uuid4()) for _ in texts]
|
| 135 |
vector_store.add_texts(texts, ids=uuids)
|
| 136 |
|
|
@@ -140,20 +161,22 @@ def process_input(input_data):
|
|
| 140 |
|
| 141 |
status.update(label="Done!", state="complete")
|
| 142 |
progress_bar.progress(1.0)
|
| 143 |
-
|
| 144 |
return vector_store
|
| 145 |
|
|
|
|
| 146 |
def answer_question(vectorstore, query):
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 154 |
-
|
| 155 |
prompt_template = PromptTemplate(
|
| 156 |
-
template="Use the
|
| 157 |
input_variables=["context", "question"]
|
| 158 |
)
|
| 159 |
|
|
@@ -168,5 +191,6 @@ def answer_question(vectorstore, query):
|
|
| 168 |
result = qa_chain({"query": query})
|
| 169 |
return result["result"].split("Answer:")[-1].strip()
|
| 170 |
|
|
|
|
| 171 |
if __name__ == "__main__":
|
| 172 |
main()
|
|
|
|
| 27 |
if "authenticated" not in st.session_state:
|
| 28 |
st.session_state.authenticated = False
|
| 29 |
|
| 30 |
+
# Sidebar with BSNL logo and authentication
|
| 31 |
with st.sidebar:
|
| 32 |
try:
|
| 33 |
st.image("bsnl_logo.png", width=200)
|
| 34 |
except FileNotFoundError:
|
| 35 |
+
st.warning("BSNL logo not found.")
|
| 36 |
|
| 37 |
st.header("RAG Control Panel")
|
| 38 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
| 39 |
|
| 40 |
+
# Custom style for Authenticate button
|
| 41 |
+
st.markdown("""
|
| 42 |
+
<style>
|
| 43 |
+
.auth-button button {
|
| 44 |
+
background-color: #007BFF !important;
|
| 45 |
+
color: white !important;
|
| 46 |
+
font-weight: bold;
|
| 47 |
+
border-radius: 8px;
|
| 48 |
+
padding: 10px 20px;
|
| 49 |
+
border: none;
|
| 50 |
+
transition: all 0.3s ease;
|
| 51 |
+
}
|
| 52 |
+
.auth-button button:hover {
|
| 53 |
+
background-color: #0056b3 !important;
|
| 54 |
+
transform: scale(1.05);
|
| 55 |
+
}
|
| 56 |
+
</style>
|
| 57 |
+
""", unsafe_allow_html=True)
|
| 58 |
+
|
| 59 |
+
with st.container():
|
| 60 |
+
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
|
| 61 |
+
if st.button("Authenticate"):
|
| 62 |
+
if api_key_input == RAG_ACCESS_KEY:
|
| 63 |
+
st.session_state.authenticated = True
|
| 64 |
+
st.success("Authentication successful!")
|
| 65 |
+
else:
|
| 66 |
+
st.error("Invalid API key.")
|
| 67 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 68 |
|
| 69 |
if st.session_state.authenticated:
|
| 70 |
+
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
|
| 71 |
+
|
| 72 |
+
if st.button("Process File") and input_data is not None:
|
| 73 |
+
try:
|
| 74 |
+
vector_store = process_input(input_data)
|
| 75 |
+
st.session_state.vectorstore = vector_store
|
| 76 |
+
st.success("File processed successfully. You can now ask questions.")
|
| 77 |
+
except Exception as e:
|
| 78 |
+
st.error(f"Processing failed: {str(e)}")
|
| 79 |
+
|
| 80 |
+
st.subheader("Chat History")
|
| 81 |
+
for i, (q, a) in enumerate(st.session_state.history):
|
| 82 |
+
st.write(f"**Q{i+1}:** {q}")
|
| 83 |
+
st.write(f"**A{i+1}:** {a}")
|
| 84 |
+
st.markdown("---")
|
| 85 |
+
|
| 86 |
+
# Main app UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
def main():
|
| 88 |
+
st.markdown("""
|
| 89 |
+
<style>
|
| 90 |
+
.stApp {
|
| 91 |
+
font-family: 'Roboto', sans-serif;
|
| 92 |
+
background-color: #FFFFFF;
|
| 93 |
+
color: #333;
|
| 94 |
+
}
|
| 95 |
+
</style>
|
| 96 |
+
""", unsafe_allow_html=True)
|
| 97 |
+
|
| 98 |
st.title("RAG Q&A App with Mistral AI")
|
| 99 |
+
st.markdown("Welcome to the BSNL RAG App! Upload a PDF and ask questions.")
|
| 100 |
|
| 101 |
if not st.session_state.authenticated:
|
| 102 |
+
st.warning("Please authenticate using the sidebar.")
|
| 103 |
return
|
| 104 |
|
| 105 |
if st.session_state.vectorstore is None:
|
| 106 |
+
st.info("Please upload and process a PDF file.")
|
| 107 |
return
|
| 108 |
|
| 109 |
query = st.text_input("Enter your question:")
|
|
|
|
| 114 |
st.session_state.history.append((query, answer))
|
| 115 |
st.write("**Answer:**", answer)
|
| 116 |
except Exception as e:
|
| 117 |
+
st.error(f"Error generating answer: {str(e)}")
|
| 118 |
|
| 119 |
+
# PDF processing logic
|
| 120 |
def process_input(input_data):
|
| 121 |
os.makedirs("vectorstore", exist_ok=True)
|
| 122 |
os.chmod("vectorstore", 0o777)
|
| 123 |
|
| 124 |
progress_bar = st.progress(0)
|
| 125 |
+
status = st.status("Processing PDF file...", expanded=True)
|
| 126 |
|
| 127 |
status.update(label="Reading PDF file...")
|
| 128 |
progress_bar.progress(0.2)
|
|
|
|
| 129 |
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
| 130 |
+
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
| 131 |
|
| 132 |
status.update(label="Splitting text...")
|
| 133 |
progress_bar.progress(0.4)
|
| 134 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 135 |
+
texts = text_splitter.split_text(documents)
|
|
|
|
| 136 |
|
| 137 |
status.update(label="Creating embeddings...")
|
| 138 |
progress_bar.progress(0.6)
|
| 139 |
+
hf_embeddings = HuggingFaceEmbeddings(
|
|
|
|
| 140 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
| 141 |
+
model_kwargs={'device': 'cpu'}
|
| 142 |
)
|
| 143 |
|
| 144 |
+
status.update(label="Building vector store...")
|
| 145 |
progress_bar.progress(0.8)
|
| 146 |
+
dimension = len(hf_embeddings.embed_query("test"))
|
|
|
|
| 147 |
index = faiss.IndexFlatL2(dimension)
|
| 148 |
vector_store = FAISS(
|
| 149 |
+
embedding_function=hf_embeddings,
|
| 150 |
index=index,
|
| 151 |
docstore=InMemoryDocstore({}),
|
| 152 |
index_to_docstore_id={}
|
| 153 |
)
|
| 154 |
+
|
| 155 |
uuids = [str(uuid.uuid4()) for _ in texts]
|
| 156 |
vector_store.add_texts(texts, ids=uuids)
|
| 157 |
|
|
|
|
| 161 |
|
| 162 |
status.update(label="Done!", state="complete")
|
| 163 |
progress_bar.progress(1.0)
|
|
|
|
| 164 |
return vector_store
|
| 165 |
|
| 166 |
+
# Question-answering logic
|
| 167 |
def answer_question(vectorstore, query):
|
| 168 |
+
try:
|
| 169 |
+
llm = HuggingFaceHub(
|
| 170 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
| 171 |
+
model_kwargs={"temperature": 0.7, "max_length": 512},
|
| 172 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
| 173 |
+
)
|
| 174 |
+
except Exception as e:
|
| 175 |
+
raise RuntimeError("Failed to load LLM. Check Hugging Face API key and access rights.") from e
|
| 176 |
|
| 177 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
|
|
|
| 178 |
prompt_template = PromptTemplate(
|
| 179 |
+
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
| 180 |
input_variables=["context", "question"]
|
| 181 |
)
|
| 182 |
|
|
|
|
| 191 |
result = qa_chain({"query": query})
|
| 192 |
return result["result"].split("Answer:")[-1].strip()
|
| 193 |
|
| 194 |
+
# Run the app
|
| 195 |
if __name__ == "__main__":
|
| 196 |
main()
|