File size: 6,744 Bytes
aa2bec3
 
 
 
 
 
 
 
 
 
 
 
 
4a31251
aa2bec3
4a31251
 
 
 
 
 
 
 
 
 
aa2bec3
6d72d65
aa2bec3
 
 
 
 
 
 
4a31251
aa2bec3
0c25e8c
5d008ae
4a31251
31ffc5e
5d008ae
aa2bec3
 
5d008ae
4a31251
31ffc5e
 
 
 
 
 
 
 
 
 
4a31251
31ffc5e
 
 
 
 
 
 
 
 
 
 
4a31251
31ffc5e
 
 
 
 
5d008ae
aa2bec3
31ffc5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a31251
aa2bec3
31ffc5e
 
 
 
 
 
 
 
 
 
c5d0599
31ffc5e
5d008ae
aa2bec3
31ffc5e
aa2bec3
5d008ae
aa2bec3
31ffc5e
aa2bec3
5d008ae
aa2bec3
 
 
5d008ae
 
 
 
 
31ffc5e
aa2bec3
4a31251
6c5d119
5d008ae
6d72d65
5d008ae
1676c9d
4a31251
5d008ae
4a31251
5d008ae
7edfd17
31ffc5e
5d008ae
4a31251
5d008ae
31ffc5e
 
5d008ae
4a31251
5d008ae
31ffc5e
aa2bec3
31ffc5e
aa2bec3
5d008ae
4a31251
5d008ae
31ffc5e
aa2bec3
 
31ffc5e
aa2bec3
 
 
 
31ffc5e
5d008ae
aa2bec3
5d008ae
4a31251
5d008ae
aa2bec3
5d008ae
4a31251
1676c9d
aa2bec3
 
4a31251
aa2bec3
4a31251
 
 
 
 
 
 
 
5d008ae
aa2bec3
 
6d72d65
aa2bec3
 
5d008ae
aa2bec3
 
 
 
 
 
 
5d008ae
aa2bec3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import streamlit as st
import os
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
from dotenv import load_dotenv

# Load local .env (only useful locally)
load_dotenv()

# Load keys
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip()

if not HUGGINGFACEHUB_API_TOKEN:
    st.warning("Hugging Face API token not found in environment variables! "
               "Please set it in your Hugging Face Secrets or your .env file.")

# Initialize session state
if "vectorstore" not in st.session_state:
    st.session_state.vectorstore = None
if "history" not in st.session_state:
    st.session_state.history = []
if "authenticated" not in st.session_state:
    st.session_state.authenticated = False

# Sidebar with BSNL logo and authentication
with st.sidebar:
    try:
        st.image("bsnl_logo.png", width=200)
    except Exception:
        st.warning("BSNL logo not found.")

    st.header("RAG Control Panel")
    api_key_input = st.text_input("Enter RAG Access Key", type="password")

    # Blue authenticate button style
    st.markdown("""
        <style>
        .auth-button button {
            background-color: #007BFF !important;
            color: white !important;
            font-weight: bold;
            border-radius: 8px;
            padding: 10px 20px;
            border: none;
            transition: all 0.3s ease;
            width: 100%;
        }
        .auth-button button:hover {
            background-color: #0056b3 !important;
            transform: scale(1.05);
        }
        </style>
    """, unsafe_allow_html=True)

    with st.container():
        st.markdown('<div class="auth-button">', unsafe_allow_html=True)
        if st.button("Authenticate"):
            if api_key_input == RAG_ACCESS_KEY and RAG_ACCESS_KEY is not None:
                st.session_state.authenticated = True
                st.success("Authentication successful!")
            else:
                st.error("Invalid API key.")
        st.markdown('</div>', unsafe_allow_html=True)

    if st.session_state.authenticated:
        input_data = st.file_uploader("Upload a PDF file", type=["pdf"])

        if st.button("Process File") and input_data is not None:
            try:
                vector_store = process_input(input_data)
                st.session_state.vectorstore = vector_store
                st.success("File processed successfully. You can now ask questions.")
            except Exception as e:
                st.error(f"Processing failed: {str(e)}")

    st.subheader("Chat History")
    for i, (q, a) in enumerate(st.session_state.history):
        st.write(f"**Q{i+1}:** {q}")
        st.write(f"**A{i+1}:** {a}")
        st.markdown("---")

# Main app UI
def main():
    st.markdown("""
        <style>
        .stApp {
            font-family: 'Roboto', sans-serif;
            background-color: #FFFFFF;
            color: #333;
        }
        </style>
    """, unsafe_allow_html=True)

    st.title("RAG Q&A App with Mistral AI")
    st.markdown("Welcome to the BSNL RAG App! Upload a PDF and ask questions.")

    if not st.session_state.authenticated:
        st.warning("Please authenticate using the sidebar.")
        return

    if st.session_state.vectorstore is None:
        st.info("Please upload and process a PDF file.")
        return

    query = st.text_input("Enter your question:")
    if st.button("Submit") and query:
        with st.spinner("Generating answer..."):
            try:
                answer = answer_question(st.session_state.vectorstore, query)
                st.session_state.history.append((query, answer))
                st.write("**Answer:**", answer)
            except Exception as e:
                st.error(f"Error generating answer: {str(e)}")

# PDF processing logic
def process_input(input_data):
    os.makedirs("vectorstore", exist_ok=True)
    os.chmod("vectorstore", 0o777)

    progress_bar = st.progress(0)
    status = st.empty()

    status.text("Reading PDF file...")
    progress_bar.progress(0.2)
    pdf_reader = PdfReader(BytesIO(input_data.read()))
    documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])

    status.text("Splitting text...")
    progress_bar.progress(0.4)
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    texts = text_splitter.split_text(documents)

    status.text("Creating embeddings...")
    progress_bar.progress(0.6)
    hf_embeddings = HuggingFaceEmbeddings(
        model_name="sentence-transformers/all-mpnet-base-v2",
        model_kwargs={'device': 'cpu'}
    )

    status.text("Building vector store...")
    progress_bar.progress(0.8)
    dimension = len(hf_embeddings.embed_query("test"))
    index = faiss.IndexFlatL2(dimension)
    vector_store = FAISS(
        embedding_function=hf_embeddings,
        index=index,
        docstore=InMemoryDocstore({}),
        index_to_docstore_id={}
    )

    uuids = [str(uuid.uuid4()) for _ in texts]
    vector_store.add_texts(texts, ids=uuids)

    status.text("Saving vector store...")
    progress_bar.progress(0.9)
    vector_store.save_local("vectorstore/faiss_index")

    status.text("Done!")
    progress_bar.progress(1.0)
    return vector_store

# Question-answering logic
def answer_question(vectorstore, query):
    if not HUGGINGFACEHUB_API_TOKEN:
        raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")

    llm = HuggingFaceHub(
        repo_id="mistralai/Mistral-7B-Instruct-v0.1",
        model_kwargs={"temperature": 0.7, "max_length": 512},
        huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
    )

    retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
    prompt_template = PromptTemplate(
        template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
        input_variables=["context", "question"]
    )

    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=False,
        chain_type_kwargs={"prompt": prompt_template}
    )

    result = qa_chain({"query": query})
    return result["result"].split("Answer:")[-1].strip()

if __name__ == "__main__":
    main()