Spaces:
Sleeping
Sleeping
File size: 6,744 Bytes
aa2bec3 4a31251 aa2bec3 4a31251 aa2bec3 6d72d65 aa2bec3 4a31251 aa2bec3 0c25e8c 5d008ae 4a31251 31ffc5e 5d008ae aa2bec3 5d008ae 4a31251 31ffc5e 4a31251 31ffc5e 4a31251 31ffc5e 5d008ae aa2bec3 31ffc5e 4a31251 aa2bec3 31ffc5e c5d0599 31ffc5e 5d008ae aa2bec3 31ffc5e aa2bec3 5d008ae aa2bec3 31ffc5e aa2bec3 5d008ae aa2bec3 5d008ae 31ffc5e aa2bec3 4a31251 6c5d119 5d008ae 6d72d65 5d008ae 1676c9d 4a31251 5d008ae 4a31251 5d008ae 7edfd17 31ffc5e 5d008ae 4a31251 5d008ae 31ffc5e 5d008ae 4a31251 5d008ae 31ffc5e aa2bec3 31ffc5e aa2bec3 5d008ae 4a31251 5d008ae 31ffc5e aa2bec3 31ffc5e aa2bec3 31ffc5e 5d008ae aa2bec3 5d008ae 4a31251 5d008ae aa2bec3 5d008ae 4a31251 1676c9d aa2bec3 4a31251 aa2bec3 4a31251 5d008ae aa2bec3 6d72d65 aa2bec3 5d008ae aa2bec3 5d008ae aa2bec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import streamlit as st
import os
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
from dotenv import load_dotenv
# Load local .env (only useful locally)
load_dotenv()
# Load keys
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip()
if not HUGGINGFACEHUB_API_TOKEN:
st.warning("Hugging Face API token not found in environment variables! "
"Please set it in your Hugging Face Secrets or your .env file.")
# Initialize session state
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "history" not in st.session_state:
st.session_state.history = []
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
# Sidebar with BSNL logo and authentication
with st.sidebar:
try:
st.image("bsnl_logo.png", width=200)
except Exception:
st.warning("BSNL logo not found.")
st.header("RAG Control Panel")
api_key_input = st.text_input("Enter RAG Access Key", type="password")
# Blue authenticate button style
st.markdown("""
<style>
.auth-button button {
background-color: #007BFF !important;
color: white !important;
font-weight: bold;
border-radius: 8px;
padding: 10px 20px;
border: none;
transition: all 0.3s ease;
width: 100%;
}
.auth-button button:hover {
background-color: #0056b3 !important;
transform: scale(1.05);
}
</style>
""", unsafe_allow_html=True)
with st.container():
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
if st.button("Authenticate"):
if api_key_input == RAG_ACCESS_KEY and RAG_ACCESS_KEY is not None:
st.session_state.authenticated = True
st.success("Authentication successful!")
else:
st.error("Invalid API key.")
st.markdown('</div>', unsafe_allow_html=True)
if st.session_state.authenticated:
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
if st.button("Process File") and input_data is not None:
try:
vector_store = process_input(input_data)
st.session_state.vectorstore = vector_store
st.success("File processed successfully. You can now ask questions.")
except Exception as e:
st.error(f"Processing failed: {str(e)}")
st.subheader("Chat History")
for i, (q, a) in enumerate(st.session_state.history):
st.write(f"**Q{i+1}:** {q}")
st.write(f"**A{i+1}:** {a}")
st.markdown("---")
# Main app UI
def main():
st.markdown("""
<style>
.stApp {
font-family: 'Roboto', sans-serif;
background-color: #FFFFFF;
color: #333;
}
</style>
""", unsafe_allow_html=True)
st.title("RAG Q&A App with Mistral AI")
st.markdown("Welcome to the BSNL RAG App! Upload a PDF and ask questions.")
if not st.session_state.authenticated:
st.warning("Please authenticate using the sidebar.")
return
if st.session_state.vectorstore is None:
st.info("Please upload and process a PDF file.")
return
query = st.text_input("Enter your question:")
if st.button("Submit") and query:
with st.spinner("Generating answer..."):
try:
answer = answer_question(st.session_state.vectorstore, query)
st.session_state.history.append((query, answer))
st.write("**Answer:**", answer)
except Exception as e:
st.error(f"Error generating answer: {str(e)}")
# PDF processing logic
def process_input(input_data):
os.makedirs("vectorstore", exist_ok=True)
os.chmod("vectorstore", 0o777)
progress_bar = st.progress(0)
status = st.empty()
status.text("Reading PDF file...")
progress_bar.progress(0.2)
pdf_reader = PdfReader(BytesIO(input_data.read()))
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
status.text("Splitting text...")
progress_bar.progress(0.4)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_text(documents)
status.text("Creating embeddings...")
progress_bar.progress(0.6)
hf_embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
model_kwargs={'device': 'cpu'}
)
status.text("Building vector store...")
progress_bar.progress(0.8)
dimension = len(hf_embeddings.embed_query("test"))
index = faiss.IndexFlatL2(dimension)
vector_store = FAISS(
embedding_function=hf_embeddings,
index=index,
docstore=InMemoryDocstore({}),
index_to_docstore_id={}
)
uuids = [str(uuid.uuid4()) for _ in texts]
vector_store.add_texts(texts, ids=uuids)
status.text("Saving vector store...")
progress_bar.progress(0.9)
vector_store.save_local("vectorstore/faiss_index")
status.text("Done!")
progress_bar.progress(1.0)
return vector_store
# Question-answering logic
def answer_question(vectorstore, query):
if not HUGGINGFACEHUB_API_TOKEN:
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.7, "max_length": 512},
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
prompt_template = PromptTemplate(
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
input_variables=["context", "question"]
)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
result = qa_chain({"query": query})
return result["result"].split("Answer:")[-1].strip()
if __name__ == "__main__":
main()
|