Spaces:
Running
Running
# IndicTransTokenizer | |
The goal of this repository is to provide a simple, modular, and extendable tokenizer for [IndicTrans2](https://github.com/AI4Bharat/IndicTrans2) and be compatible with the HuggingFace models released. | |
## Pre-requisites | |
- `Python 3.8+` | |
- [Indic NLP Library](https://github.com/VarunGumma/indic_nlp_library) | |
- Other requirements as listed in `requirements.txt` | |
## Configuration | |
- Editable installation (Note, this may take a while): | |
```bash | |
git clone https://github.com/VarunGumma/IndicTransTokenizer | |
cd IndicTransTokenizer | |
pip install --editable ./ | |
``` | |
## Usage | |
```python | |
import torch | |
from transformers import AutoModelForSeq2SeqLM | |
from IndicTransTokenizer import IndicProcessor, IndicTransTokenizer | |
tokenizer = IndicTransTokenizer(direction="en-indic") | |
ip = IndicProcessor(inference=True) | |
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-dist-200M", trust_remote_code=True) | |
sentences = [ | |
"This is a test sentence.", | |
"This is another longer different test sentence.", | |
"Please send an SMS to 9876543210 and an email on [email protected] by 15th October, 2023.", | |
] | |
batch = ip.preprocess_batch(sentences, src_lang="eng_Latn", tgt_lang="hin_Deva") | |
batch = tokenizer(batch, src=True, return_tensors="pt") | |
with torch.inference_mode(): | |
outputs = model.generate(**batch, num_beams=5, num_return_sequences=1, max_length=256) | |
outputs = tokenizer.batch_decode(outputs, src=False) | |
outputs = ip.postprocess_batch(outputs, lang="hin_Deva") | |
print(outputs) | |
>>> ['यह एक परीक्षण वाक्य है।', 'यह एक और लंबा अलग परीक्षण वाक्य है।', 'कृपया 9876543210 पर एक एस. एम. एस. भेजें और 15 अक्टूबर, 2023 तक [email protected] पर एक ईमेल भेजें।'] | |
``` | |
For using the tokenizer to train/fine-tune the model, just set the `inference` argument of IndicProcessor to `False`. | |
## Authors | |
- Varun Gumma ([email protected]) | |
- Jay Gala ([email protected]) | |
- Pranjal Agadh Chitale ([email protected]) | |
- Raj Dabre ([email protected]) | |
## Bugs and Contribution | |
Since this a bleeding-edge module, you may encounter broken stuff and import issues once in a while. In case you encounter any bugs or want additional functionalities, please feel free to raise `Issues`/`Pull Requests` or contact the authors. | |
## Citation | |
If you use our codebase, models or tokenizer, please do cite the following paper: | |
```bibtex | |
@article{ | |
gala2023indictrans, | |
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages}, | |
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan}, | |
journal={Transactions on Machine Learning Research}, | |
issn={2835-8856}, | |
year={2023}, | |
url={https://openreview.net/forum?id=vfT4YuzAYA}, | |
note={} | |
} | |
``` | |
## Note | |
This tokenizer module is currently **not** compatible with the [PreTrainedTokenizer](https://huggingface.co/docs/transformers/v4.36.1/en/main_classes/tokenizer#transformers.PreTrainedTokenizer) module from HuggingFace. Hence, we are actively looking for `Pull Requests` to port this tokenizer to HF. Any leads on that front are welcome! | |