Spaces:
Running
Running
# import numpy as np | |
# import streamlit as st | |
# from openai import OpenAI | |
# import os | |
# import sys | |
# from dotenv import load_dotenv, dotenv_values | |
# load_dotenv() | |
# # initialize the client | |
# client = OpenAI( | |
# base_url="https://api-inference.huggingface.co/v1", | |
# api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token | |
# ) | |
# #Create supported models | |
# model_links ={ | |
# "Meta-Llama-3-8B":"meta-llama/Meta-Llama-3-8B-Instruct", | |
# "Mistral-7B":"mistralai/Mistral-7B-Instruct-v0.2", | |
# "Gemma-7B":"google/gemma-1.1-7b-it", | |
# "Gemma-2B":"google/gemma-1.1-2b-it", | |
# "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta", | |
# } | |
# #Pull info about the model to display | |
# model_info ={ | |
# "Mistral-7B": | |
# {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ | |
# \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""", | |
# 'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'}, | |
# "Gemma-7B": | |
# {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ | |
# \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **7 billion parameters.** \n""", | |
# 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'}, | |
# "Gemma-2B": | |
# {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ | |
# \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""", | |
# 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'}, | |
# "Zephyr-7B": | |
# {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ | |
# \nFrom Huggingface: \n\ | |
# Zephyr is a series of language models that are trained to act as helpful assistants. \ | |
# [Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\ | |
# is the third model in the series, and is a fine-tuned version of google/gemma-7b \ | |
# that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""", | |
# 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'}, | |
# "Zephyr-7B-β": | |
# {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ | |
# \nFrom Huggingface: \n\ | |
# Zephyr is a series of language models that are trained to act as helpful assistants. \ | |
# [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\ | |
# is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \ | |
# that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""", | |
# 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'}, | |
# "Meta-Llama-3-8B": | |
# {'description':"""The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ | |
# \nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""", | |
# 'logo':'Llama_logo.png'}, | |
# } | |
# #Random dog images for error message | |
# random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg", | |
# "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg", | |
# "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg", | |
# "1326984c-39b0-492c-a773-f120d747a7e2.jpg", | |
# "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg", | |
# "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg", | |
# "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg", | |
# "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg", | |
# "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg", | |
# "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg", | |
# "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg", | |
# "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg", | |
# "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"] | |
# def reset_conversation(): | |
# ''' | |
# Resets Conversation | |
# ''' | |
# st.session_state.conversation = [] | |
# st.session_state.messages = [] | |
# return None | |
# # Define the available models | |
# models =[key for key in model_links.keys()] | |
# # Create the sidebar with the dropdown for model selection | |
# selected_model = st.sidebar.selectbox("Select Model", models) | |
# #Create a temperature slider | |
# temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) | |
# #Add reset button to clear conversation | |
# st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button | |
# # Create model description | |
# st.sidebar.write(f"You're now chatting with **{selected_model}**") | |
# st.sidebar.markdown(model_info[selected_model]['description']) | |
# st.sidebar.image(model_info[selected_model]['logo']) | |
# st.sidebar.markdown("*Generated content may be inaccurate or false.*") | |
# if "prev_option" not in st.session_state: | |
# st.session_state.prev_option = selected_model | |
# if st.session_state.prev_option != selected_model: | |
# st.session_state.messages = [] | |
# # st.write(f"Changed to {selected_model}") | |
# st.session_state.prev_option = selected_model | |
# reset_conversation() | |
# #Pull in the model we want to use | |
# repo_id = model_links[selected_model] | |
# st.subheader(f'AI - {selected_model}') | |
# # st.title(f'ChatBot Using {selected_model}') | |
# # Set a default model | |
# if selected_model not in st.session_state: | |
# st.session_state[selected_model] = model_links[selected_model] | |
# # Initialize chat history | |
# if "messages" not in st.session_state: | |
# st.session_state.messages = [] | |
# # Display chat messages from history on app rerun | |
# for message in st.session_state.messages: | |
# with st.chat_message(message["role"]): | |
# st.markdown(message["content"]) | |
# # Accept user input | |
# if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): | |
# # Display user message in chat message container | |
# with st.chat_message("user"): | |
# st.markdown(prompt) | |
# # Add user message to chat history | |
# st.session_state.messages.append({"role": "user", "content": prompt}) | |
# # Display assistant response in chat message container | |
# with st.chat_message("assistant"): | |
# try: | |
# stream = client.chat.completions.create( | |
# model=model_links[selected_model], | |
# messages=[ | |
# {"role": m["role"], "content": m["content"]} | |
# for m in st.session_state.messages | |
# ], | |
# temperature=temp_values,#0.5, | |
# stream=True, | |
# max_tokens=3000, | |
# ) | |
# response = st.write_stream(stream) | |
# except Exception as e: | |
# # st.empty() | |
# response = "😵💫 Looks like someone unplugged something!\ | |
# \n Either the model space is being updated or something is down.\ | |
# \n\ | |
# \n Try again later. \ | |
# \n\ | |
# \n Here's a random pic of a 🐶:" | |
# st.write(response) | |
# random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))] | |
# st.image(random_dog_pick) | |
# st.write("This was the error message:") | |
# st.write(e) | |
# st.session_state.messages.append({"role": "assistant", "content": response}) | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
##################################### | |
# import gradio as gr | |
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch() | |
######################################## | |
from openai import OpenAI | |
import streamlit as st | |
import os | |
import sys | |
from dotenv import load_dotenv, dotenv_values | |
load_dotenv() | |
st.title("ChatGPT-like clone") | |
client = OpenAI(api_key=os.environ.get["OPENAI_API_KEY"]) | |
if "openai_model" not in st.session_state: | |
st.session_state["openai_model"] = "gpt-3.5-turbo" | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if prompt := st.chat_input("What is up?"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
stream = client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
stream=True, | |
) | |
response = st.write_stream(stream) | |
st.session_state.messages.append({"role": "assistant", "content": response}) |