chat / app.py
saikub's picture
Update app.py
b2ce190 verified
raw
history blame
11.2 kB
# import numpy as np
# import streamlit as st
# from openai import OpenAI
# import os
# import sys
# from dotenv import load_dotenv, dotenv_values
# load_dotenv()
# # initialize the client
# client = OpenAI(
# base_url="https://api-inference.huggingface.co/v1",
# api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
# )
# #Create supported models
# model_links ={
# "Meta-Llama-3-8B":"meta-llama/Meta-Llama-3-8B-Instruct",
# "Mistral-7B":"mistralai/Mistral-7B-Instruct-v0.2",
# "Gemma-7B":"google/gemma-1.1-7b-it",
# "Gemma-2B":"google/gemma-1.1-2b-it",
# "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta",
# }
# #Pull info about the model to display
# model_info ={
# "Mistral-7B":
# {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
# 'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
# "Gemma-7B":
# {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **7 billion parameters.** \n""",
# 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
# "Gemma-2B":
# {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""",
# 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
# "Zephyr-7B":
# {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nFrom Huggingface: \n\
# Zephyr is a series of language models that are trained to act as helpful assistants. \
# [Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\
# is the third model in the series, and is a fine-tuned version of google/gemma-7b \
# that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
# 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'},
# "Zephyr-7B-β":
# {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nFrom Huggingface: \n\
# Zephyr is a series of language models that are trained to act as helpful assistants. \
# [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
# is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
# that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
# 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
# "Meta-Llama-3-8B":
# {'description':"""The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
# 'logo':'Llama_logo.png'},
# }
# #Random dog images for error message
# random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
# "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
# "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
# "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
# "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
# "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
# "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
# "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
# "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
# "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
# "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
# "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
# "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]
# def reset_conversation():
# '''
# Resets Conversation
# '''
# st.session_state.conversation = []
# st.session_state.messages = []
# return None
# # Define the available models
# models =[key for key in model_links.keys()]
# # Create the sidebar with the dropdown for model selection
# selected_model = st.sidebar.selectbox("Select Model", models)
# #Create a temperature slider
# temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
# #Add reset button to clear conversation
# st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button
# # Create model description
# st.sidebar.write(f"You're now chatting with **{selected_model}**")
# st.sidebar.markdown(model_info[selected_model]['description'])
# st.sidebar.image(model_info[selected_model]['logo'])
# st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# if "prev_option" not in st.session_state:
# st.session_state.prev_option = selected_model
# if st.session_state.prev_option != selected_model:
# st.session_state.messages = []
# # st.write(f"Changed to {selected_model}")
# st.session_state.prev_option = selected_model
# reset_conversation()
# #Pull in the model we want to use
# repo_id = model_links[selected_model]
# st.subheader(f'AI - {selected_model}')
# # st.title(f'ChatBot Using {selected_model}')
# # Set a default model
# if selected_model not in st.session_state:
# st.session_state[selected_model] = model_links[selected_model]
# # Initialize chat history
# if "messages" not in st.session_state:
# st.session_state.messages = []
# # Display chat messages from history on app rerun
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Accept user input
# if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
# # Display user message in chat message container
# with st.chat_message("user"):
# st.markdown(prompt)
# # Add user message to chat history
# st.session_state.messages.append({"role": "user", "content": prompt})
# # Display assistant response in chat message container
# with st.chat_message("assistant"):
# try:
# stream = client.chat.completions.create(
# model=model_links[selected_model],
# messages=[
# {"role": m["role"], "content": m["content"]}
# for m in st.session_state.messages
# ],
# temperature=temp_values,#0.5,
# stream=True,
# max_tokens=3000,
# )
# response = st.write_stream(stream)
# except Exception as e:
# # st.empty()
# response = "😵‍💫 Looks like someone unplugged something!\
# \n Either the model space is being updated or something is down.\
# \n\
# \n Try again later. \
# \n\
# \n Here's a random pic of a 🐶:"
# st.write(response)
# random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))]
# st.image(random_dog_pick)
# st.write("This was the error message:")
# st.write(e)
# st.session_state.messages.append({"role": "assistant", "content": response})
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
#####################################
# import gradio as gr
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
from openai import OpenAI
import streamlit as st
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()
st.title("ChatGPT-like clone")
client = OpenAI(api_key=os.environ.get["OPENAI_API_KEY"])
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("What is up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})