Spaces:
Running
Running
File size: 11,164 Bytes
3132846 0b6fa72 3132846 b73a01d 0b6fa72 a69da5a 0b6fa72 a69da5a 0b6fa72 3132846 0b6fa72 b73a01d a69da5a 0b6fa72 2e796d1 3132846 0b6fa72 b73a01d 0b6fa72 b73a01d 3132846 0b6fa72 2e796d1 3132846 0b6fa72 2e796d1 0b6fa72 a69da5a 0b6fa72 b73a01d 3132846 0b6fa72 b73a01d 3132846 0b6fa72 3132846 0b6fa72 b73a01d 3132846 0b6fa72 3132846 0b6fa72 3132846 0b6fa72 a69da5a 0b6fa72 b73a01d 985f30b 3132846 0b6fa72 2e796d1 b73a01d 985f30b b73a01d 0b6fa72 b2ce190 985f30b 0b6fa72 985f30b b2ce190 0b6fa72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# import numpy as np
# import streamlit as st
# from openai import OpenAI
# import os
# import sys
# from dotenv import load_dotenv, dotenv_values
# load_dotenv()
# # initialize the client
# client = OpenAI(
# base_url="https://api-inference.huggingface.co/v1",
# api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
# )
# #Create supported models
# model_links ={
# "Meta-Llama-3-8B":"meta-llama/Meta-Llama-3-8B-Instruct",
# "Mistral-7B":"mistralai/Mistral-7B-Instruct-v0.2",
# "Gemma-7B":"google/gemma-1.1-7b-it",
# "Gemma-2B":"google/gemma-1.1-2b-it",
# "Zephyr-7B-β":"HuggingFaceH4/zephyr-7b-beta",
# }
# #Pull info about the model to display
# model_info ={
# "Mistral-7B":
# {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
# 'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
# "Gemma-7B":
# {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **7 billion parameters.** \n""",
# 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
# "Gemma-2B":
# {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **2 billion parameters.** \n""",
# 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'},
# "Zephyr-7B":
# {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nFrom Huggingface: \n\
# Zephyr is a series of language models that are trained to act as helpful assistants. \
# [Zephyr 7B Gemma](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)\
# is the third model in the series, and is a fine-tuned version of google/gemma-7b \
# that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
# 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'},
# "Zephyr-7B-β":
# {'description':"""The Zephyr model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nFrom Huggingface: \n\
# Zephyr is a series of language models that are trained to act as helpful assistants. \
# [Zephyr-7B-β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)\
# is the second model in the series, and is a fine-tuned version of mistralai/Mistral-7B-v0.1 \
# that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO)\n""",
# 'logo':'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'},
# "Meta-Llama-3-8B":
# {'description':"""The Llama (3) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
# \nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
# 'logo':'Llama_logo.png'},
# }
# #Random dog images for error message
# random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
# "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
# "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
# "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
# "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
# "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
# "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
# "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
# "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
# "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
# "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
# "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
# "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]
# def reset_conversation():
# '''
# Resets Conversation
# '''
# st.session_state.conversation = []
# st.session_state.messages = []
# return None
# # Define the available models
# models =[key for key in model_links.keys()]
# # Create the sidebar with the dropdown for model selection
# selected_model = st.sidebar.selectbox("Select Model", models)
# #Create a temperature slider
# temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
# #Add reset button to clear conversation
# st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button
# # Create model description
# st.sidebar.write(f"You're now chatting with **{selected_model}**")
# st.sidebar.markdown(model_info[selected_model]['description'])
# st.sidebar.image(model_info[selected_model]['logo'])
# st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# if "prev_option" not in st.session_state:
# st.session_state.prev_option = selected_model
# if st.session_state.prev_option != selected_model:
# st.session_state.messages = []
# # st.write(f"Changed to {selected_model}")
# st.session_state.prev_option = selected_model
# reset_conversation()
# #Pull in the model we want to use
# repo_id = model_links[selected_model]
# st.subheader(f'AI - {selected_model}')
# # st.title(f'ChatBot Using {selected_model}')
# # Set a default model
# if selected_model not in st.session_state:
# st.session_state[selected_model] = model_links[selected_model]
# # Initialize chat history
# if "messages" not in st.session_state:
# st.session_state.messages = []
# # Display chat messages from history on app rerun
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Accept user input
# if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
# # Display user message in chat message container
# with st.chat_message("user"):
# st.markdown(prompt)
# # Add user message to chat history
# st.session_state.messages.append({"role": "user", "content": prompt})
# # Display assistant response in chat message container
# with st.chat_message("assistant"):
# try:
# stream = client.chat.completions.create(
# model=model_links[selected_model],
# messages=[
# {"role": m["role"], "content": m["content"]}
# for m in st.session_state.messages
# ],
# temperature=temp_values,#0.5,
# stream=True,
# max_tokens=3000,
# )
# response = st.write_stream(stream)
# except Exception as e:
# # st.empty()
# response = "😵💫 Looks like someone unplugged something!\
# \n Either the model space is being updated or something is down.\
# \n\
# \n Try again later. \
# \n\
# \n Here's a random pic of a 🐶:"
# st.write(response)
# random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))]
# st.image(random_dog_pick)
# st.write("This was the error message:")
# st.write(e)
# st.session_state.messages.append({"role": "assistant", "content": response})
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
#####################################
# import gradio as gr
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
from openai import OpenAI
import streamlit as st
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()
st.title("ChatGPT-like clone")
client = OpenAI(api_key=os.environ.get["OPENAI_API_KEY"])
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo"
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("What is up?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response}) |