Spaces:
Running
Running
import numpy as np | |
import streamlit as st | |
from openai import OpenAI | |
import os | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
# Initialize the Hugging Face client | |
hf_api_key = os.getenv('HF_API_KEY') # Replace with your Hugging Face API key | |
openai_api_key = os.getenv('OPENAI_API_KEY') # Replace with your OpenAI API key | |
client = OpenAI( | |
api_key=openai_api_key | |
) | |
# Create supported models | |
model_links = { | |
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", | |
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", | |
"Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct", | |
"Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407", | |
"Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct", | |
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct", | |
"C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus", | |
"Aya-23-35B": "CohereForAI/aya-23-35B", | |
"Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", | |
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1", | |
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
"Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat", | |
"Gemma-2-27b-it": "google/gemma-2-27b-it", | |
"Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf", | |
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf", | |
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf", | |
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", | |
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2", | |
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", | |
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct", | |
"Starchat2-15b-v0.1": "HuggingFaceH4/starchat2-15b-v0.1", | |
"Gemma-1.1-7b-it": "google/gemma-1.1-7b-it", | |
"Gemma-1.1-2b-it": "google/gemma-1.1-2b-it", | |
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta", | |
"Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha", | |
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct", | |
"Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct", | |
} | |
# Random dog images for error message | |
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg", | |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg", | |
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg", | |
"1326984c-39b0-492c-a773-f120d747a7e2.jpg", | |
"42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg", | |
"8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg", | |
"ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg", | |
"027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg", | |
"08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg", | |
"0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg", | |
"0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg", | |
"6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg", | |
"bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"] | |
# Reset conversation | |
def reset_conversation(): | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
# Define the available models | |
models = [key for key in model_links.keys()] | |
# Create the sidebar with the dropdown for model selection | |
selected_model = st.sidebar.selectbox("Select Model", models) | |
# Create a temperature slider | |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5) | |
# Add reset button to clear conversation | |
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button | |
# Create model description | |
st.sidebar.write(f"You're now chatting with **{selected_model}**") | |
st.sidebar.markdown("*Generated content may be inaccurate or false.*") | |
st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).") | |
# Initialize previous option and messages | |
if "prev_option" not in st.session_state: | |
st.session_state.prev_option = selected_model | |
if st.session_state.prev_option != selected_model: | |
st.session_state.messages = [] | |
st.session_state.prev_option = selected_model | |
reset_conversation() | |
# Pull in the model we want to use | |
repo_id = model_links[selected_model] | |
st.subheader(f'TypeGPT.net - {selected_model}') | |
# Set a default model | |
if selected_model not in st.session_state: | |
st.session_state[selected_model] = model_links[selected_model] | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
try: | |
stream = client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=temp_values, | |
stream=True, | |
max_tokens=3000, | |
) | |
response = st.write_stream(stream) | |
except Exception as e: | |
response = ("šµāš« Looks like someone unplugged something! " | |
"Either the model space is being updated or something is down. " | |
"Try again later. Here's a random pic of a š¶:") | |
st.write(response) | |
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))] | |
st.image(random_dog_pick) | |
st.write("This was the error message:") | |
st.write(e) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
##################################### | |
# import gradio as gr | |
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch() | |
######################################## | |
# import streamlit as st | |
# from transformers import AutoTokenizer, AutoModelForCausalLM | |
# # Load model directly | |
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") | |
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") | |
# # Initialize chat history | |
# if "chat_history" not in st.session_state: | |
# st.session_state.chat_history = [] | |
# # Display chat history | |
# for chat in st.session_state.chat_history: | |
# st.write(f"User: {chat['user']}") | |
# st.write(f"Response: {chat['response']}") | |
# # Get user input | |
# user_input = st.text_input("Enter your message:") | |
# # Generate response | |
# if st.button("Send"): | |
# inputs = tokenizer(user_input, return_tensors="pt") | |
# outputs = model.generate(**inputs) | |
# response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# st.session_state.chat_history.append({"user": user_input, "response": response}) | |
# st.write(f"Response: {response}") |