File size: 9,171 Bytes
2e796d1
b73a01d
 
 
 
 
 
 
 
a69da5a
 
 
 
2e796d1
a69da5a
2e796d1
b73a01d
a69da5a
b73a01d
 
2e796d1
a69da5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73a01d
 
a69da5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73a01d
2e796d1
b73a01d
 
a69da5a
2e796d1
a69da5a
 
2e796d1
a69da5a
 
2e796d1
b73a01d
a69da5a
 
 
 
2e796d1
 
 
 
a69da5a
2e796d1
 
b73a01d
2e796d1
 
 
b73a01d
 
a69da5a
2e796d1
 
 
 
a69da5a
 
 
 
2e796d1
 
 
b73a01d
2e796d1
b73a01d
 
 
 
 
2e796d1
a69da5a
2e796d1
 
a69da5a
b73a01d
 
a69da5a
b73a01d
2e796d1
 
 
 
 
 
 
 
 
 
 
 
a69da5a
2e796d1
a69da5a
 
 
2e796d1
a69da5a
 
 
 
b73a01d
 
985f30b
 
2e796d1
b73a01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985f30b
 
 
b73a01d
985f30b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Initialize the Hugging Face client
hf_api_key = os.getenv('HF_API_KEY')  # Replace with your Hugging Face API key
openai_api_key = os.getenv('OPENAI_API_KEY')  # Replace with your OpenAI API key

client = OpenAI(
    api_key=openai_api_key
)

# Create supported models
model_links = {
    "Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
    "Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
    "Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407",
    "Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct",
    "Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
    "C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus",
    "Aya-23-35B": "CohereForAI/aya-23-35B",
    "Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
    "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1",
    "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat",
    "Gemma-2-27b-it": "google/gemma-2-27b-it",
    "Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf",
    "Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
    "Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
    "Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct",
    "Starchat2-15b-v0.1": "HuggingFaceH4/starchat2-15b-v0.1",
    "Gemma-1.1-7b-it": "google/gemma-1.1-7b-it",
    "Gemma-1.1-2b-it": "google/gemma-1.1-2b-it",
    "Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta",
    "Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha",
    "Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct",
    "Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct",
}

# Random dog images for error message
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
              "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
              "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
              "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
              "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
              "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
              "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
              "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
              "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
              "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
              "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
              "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
              "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]

# Reset conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []

# Define the available models
models = [key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)

# Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation)  # Reset button

# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).")

# Initialize previous option and messages
if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    st.session_state.prev_option = selected_model
    reset_conversation()

# Pull in the model we want to use
repo_id = model_links[selected_model]

st.subheader(f'TypeGPT.net - {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model]

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,
                stream=True,
                max_tokens=3000,
            )
            response = st.write_stream(stream)

        except Exception as e:
            response = ("šŸ˜µā€šŸ’« Looks like someone unplugged something! "
                        "Either the model space is being updated or something is down. "
                        "Try again later. Here's a random pic of a šŸ¶:")
            st.write(response)
            random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
            st.image(random_dog_pick)
            st.write("This was the error message:")
            st.write(e)

    st.session_state.messages.append({"role": "assistant", "content": response})



# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()
#####################################
# import gradio as gr

# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM

# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")

# # Initialize chat history
# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = []

# # Display chat history
# for chat in st.session_state.chat_history:
#     st.write(f"User: {chat['user']}")
#     st.write(f"Response: {chat['response']}")

# # Get user input
# user_input = st.text_input("Enter your message:")

# # Generate response
# if st.button("Send"):
#     inputs = tokenizer(user_input, return_tensors="pt")
#     outputs = model.generate(**inputs)
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     st.session_state.chat_history.append({"user": user_input, "response": response})
#     st.write(f"Response: {response}")