Spaces:
Running
Running
File size: 9,171 Bytes
2e796d1 b73a01d a69da5a 2e796d1 a69da5a 2e796d1 b73a01d a69da5a b73a01d 2e796d1 a69da5a b73a01d a69da5a b73a01d 2e796d1 b73a01d a69da5a 2e796d1 a69da5a 2e796d1 a69da5a 2e796d1 b73a01d a69da5a 2e796d1 a69da5a 2e796d1 b73a01d 2e796d1 b73a01d a69da5a 2e796d1 a69da5a 2e796d1 b73a01d 2e796d1 b73a01d 2e796d1 a69da5a 2e796d1 a69da5a b73a01d a69da5a b73a01d 2e796d1 a69da5a 2e796d1 a69da5a 2e796d1 a69da5a b73a01d 985f30b 2e796d1 b73a01d 985f30b b73a01d 985f30b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Initialize the Hugging Face client
hf_api_key = os.getenv('HF_API_KEY') # Replace with your Hugging Face API key
openai_api_key = os.getenv('OPENAI_API_KEY') # Replace with your OpenAI API key
client = OpenAI(
api_key=openai_api_key
)
# Create supported models
model_links = {
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
"Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407",
"Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct",
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
"C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus",
"Aya-23-35B": "CohereForAI/aya-23-35B",
"Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1",
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat",
"Gemma-2-27b-it": "google/gemma-2-27b-it",
"Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf",
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct",
"Starchat2-15b-v0.1": "HuggingFaceH4/starchat2-15b-v0.1",
"Gemma-1.1-7b-it": "google/gemma-1.1-7b-it",
"Gemma-1.1-2b-it": "google/gemma-1.1-2b-it",
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta",
"Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha",
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct",
"Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct",
}
# Random dog images for error message
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
"1326984c-39b0-492c-a773-f120d747a7e2.jpg",
"42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
"8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
"ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
"027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
"08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
"0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
"0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
"6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
"bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]
# Reset conversation
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
# Define the available models
models = [key for key in model_links.keys()]
# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)
# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
# Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) # Reset button
# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).")
# Initialize previous option and messages
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.prev_option = selected_model
reset_conversation()
# Pull in the model we want to use
repo_id = model_links[selected_model]
st.subheader(f'TypeGPT.net - {selected_model}')
# Set a default model
if selected_model not in st.session_state:
st.session_state[selected_model] = model_links[selected_model]
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display assistant response in chat message container
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
except Exception as e:
response = ("šµāš« Looks like someone unplugged something! "
"Either the model space is being updated or something is down. "
"Try again later. Here's a random pic of a š¶:")
st.write(response)
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
st.image(random_dog_pick)
st.write("This was the error message:")
st.write(e)
st.session_state.messages.append({"role": "assistant", "content": response})
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
#####################################
# import gradio as gr
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM
# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# # Initialize chat history
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = []
# # Display chat history
# for chat in st.session_state.chat_history:
# st.write(f"User: {chat['user']}")
# st.write(f"Response: {chat['response']}")
# # Get user input
# user_input = st.text_input("Enter your message:")
# # Generate response
# if st.button("Send"):
# inputs = tokenizer(user_input, return_tensors="pt")
# outputs = model.generate(**inputs)
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# st.session_state.chat_history.append({"user": user_input, "response": response})
# st.write(f"Response: {response}") |