Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
# Define the input schema | |
class ModelInput(BaseModel): | |
prompt: str | |
max_new_tokens: int = 50 # Optional: Defaults to 50 tokens | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Load your model and tokenizer | |
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs" # Update with your model directory | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForCausalLM.from_pretrained(model_path) | |
# Initialize the pipeline | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
def generate_response(model, tokenizer, instruction): | |
"""Generate a response from the model based on an instruction.""" | |
messages = [{"role": "user", "content": instruction}] | |
input_text = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
inputs = tokenizer.encode(input_text, return_tensors="pt") | |
outputs = model.generate( | |
inputs, max_new_tokens=128, temperature=0.2, top_p=0.9, do_sample=True | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
def generate_text(input: ModelInput): | |
try: | |
response = generate_response(model, tokenizer, ModelInput) | |
return response} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def root(): | |
return {"message": "Welcome to the Hugging Face Model API!"} | |