api-smollm135m / app.py
khurrameycon's picture
Update app.py
1749217 verified
raw
history blame
2.13 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
# Define the input schema
class ModelInput(BaseModel):
prompt: str
max_new_tokens: int = 50 # Optional: Defaults to 50 tokens
# Initialize FastAPI app
app = FastAPI()
# Load your model and tokenizer
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# Initialize the pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Helper function to generate a response
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
"""Generate a response from the model based on an instruction."""
try:
# Format the input as chat messages if necessary
messages = [{"role": "user", "content": instruction}]
input_text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Tokenize and generate the output
inputs = tokenizer.encode(input_text, return_tensors="pt")
outputs = model.generate(
inputs,
max_new_tokens=max_new_tokens,
temperature=0.2,
top_p=0.9,
do_sample=True,
)
# Decode the output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
raise ValueError(f"Error generating response: {e}")
@app.post("/generate")
def generate_text(input: ModelInput):
"""API endpoint to generate text."""
try:
# Call the helper function
response = generate_response(
model=model, tokenizer=tokenizer, instruction=input.prompt, max_new_tokens=input.max_new_tokens
)
return {"generated_text": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
def root():
return {"message": "Welcome to the Hugging Face Model API!"}