sagar007's picture
Update app.py
dbedcec verified
raw
history blame
5.82 kB
import gradio as gr
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as T
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
# configurations
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
height, width = 512, 512
guidance_scale = 8
loss_scale = 200
num_inference_steps = 10
model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
model_path,
low_cpu_mem_usage = True,
torch_dtype=torch.float32
).to(torch_device)
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
styles_mapping = {
"Illustration Style": '<illustration-style>', "Line Art":'<line-art>',
"Hitokomoru Style":'<hitokomoru-style-nao>', "Marc Allante": '<Marc_Allante>',
"Midjourney":'<midjourney-style>', "Hanfu Anime": '<hanfu-anime-style>',
"Birb Style": '<birb-style>'
}
# Define seeds for all the styles
seed_list = [11, 56, 110, 65, 5, 29, 47]
# Optimized loss computation functions
def edge_detection(image):
channels = image.shape[1]
kernels = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1],
[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=image.device).float()
kernels = kernels.view(2, 1, 3, 3).repeat(channels, 1, 1, 1)
padded_image = F.pad(image, (1, 1, 1, 1), mode='replicate')
edge = F.conv2d(padded_image, kernels, groups=channels)
return torch.sqrt(edge[:, :channels]**2 + edge[:, channels:]**2)
@torch.jit.script
def compute_loss(original_image, loss_type: str):
if loss_type == 'blue':
return torch.abs(original_image[:,2] - 0.9).mean()
elif loss_type == 'edge':
ed_value = edge_detection(original_image)
return F.mse_loss(ed_value, (ed_value > 0.5).float())
elif loss_type == 'contrast':
transformed_image = T.functional.adjust_contrast(original_image, contrast_factor=2)
return torch.abs(transformed_image - original_image).mean()
elif loss_type == 'brightness':
transformed_image = T.functional.adjust_brightness(original_image, brightness_factor=2)
return torch.abs(transformed_image - original_image).mean()
elif loss_type == 'sharpness':
transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor=2)
return torch.abs(transformed_image - original_image).mean()
elif loss_type == 'saturation':
transformed_image = T.functional.adjust_saturation(original_image, saturation_factor=10)
return torch.abs(transformed_image - original_image).mean()
else:
return torch.tensor(0.0, device=original_image.device)
# Optimized generate_image function
@torch.cuda.amp.autocast()
def generate_image(seed, prompt, loss_type, loss_flag=False):
generator = torch.manual_seed(seed)
batch_size = 1
text_embeddings = sd_pipeline._encode_prompt(prompt, sd_pipeline.device, 1, True)
latents = torch.randn(
(batch_size, sd_pipeline.unet.config.in_channels, height // 8, width // 8),
generator=generator,
).to(sd_pipeline.device)
latents = latents * sd_pipeline.scheduler.init_noise_sigma
sd_pipeline.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(tqdm(sd_pipeline.scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = sd_pipeline.scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = sd_pipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if loss_flag and i % 5 == 0:
latents = latents.detach().requires_grad_()
latents_x0 = sd_pipeline.scheduler.step(noise_pred, t, latents).pred_original_sample
with torch.no_grad():
denoised_images = sd_pipeline.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
loss = compute_loss(denoised_images, loss_type) * loss_scale
print(f"Step {i}, Loss: {loss.item():.4f}")
cond_grad = torch.autograd.grad(loss, latents)[0]
latents = latents.detach() - cond_grad * sd_pipeline.scheduler.sigmas[i] ** 2
latents = sd_pipeline.scheduler.step(noise_pred, t, latents).prev_sample
return latents
# Gradio interface function
def generate_images(prompt, style, guidance_type):
images = show_image(prompt, style, guidance_type)
return images[0], images[1]
# Create Gradio interface
iface = gr.Interface(
fn=generate_images,
inputs=[
gr.Textbox(label="Prompt"),
gr.Dropdown(list(styles_mapping.keys()), label="Style"),
gr.Dropdown(["blue", "edge", "contrast", "brightness", "sharpness", "saturation"], label="Guidance Type"),
],
outputs=[
gr.Image(label="Image without Loss"),
gr.Image(label="Image with Loss"),
],
examples=get_examples(),
title="Text Inversion Image Generation",
description="Generate images using text inversion with different styles and guidance types.",
)
# Launch the app
iface.launch()