File size: 5,824 Bytes
df100ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e59359
df100ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbedcec
df100ff
 
dbedcec
 
 
 
 
 
 
 
 
df100ff
dbedcec
df100ff
dbedcec
 
df100ff
dbedcec
 
df100ff
dbedcec
 
df100ff
dbedcec
 
df100ff
dbedcec
 
df100ff
dbedcec
df100ff
dbedcec
 
df100ff
dbedcec
 
df100ff
dbedcec
df100ff
 
dbedcec
 
 
df100ff
dbedcec
df100ff
dbedcec
df100ff
dbedcec
df100ff
dbedcec
df100ff
 
dbedcec
df100ff
 
 
 
dbedcec
df100ff
dbedcec
 
 
df100ff
 
dbedcec
df100ff
 
dbedcec
df100ff
dbedcec
df100ff
 
 
dbedcec
df100ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as T
from diffusers import LMSDiscreteScheduler, DiffusionPipeline

# configurations
torch_device        = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
height, width       = 512, 512
guidance_scale      = 8
loss_scale          = 200
num_inference_steps = 10


model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
    model_path,
    low_cpu_mem_usage = True,
    torch_dtype=torch.float32
).to(torch_device)


sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")


styles_mapping = {
    "Illustration Style": '<illustration-style>', "Line Art":'<line-art>',
    "Hitokomoru Style":'<hitokomoru-style-nao>', "Marc Allante": '<Marc_Allante>',
    "Midjourney":'<midjourney-style>', "Hanfu Anime": '<hanfu-anime-style>',
    "Birb Style": '<birb-style>'
}

# Define seeds for all the styles
seed_list = [11, 56, 110, 65, 5, 29, 47]
# Optimized loss computation functions
def edge_detection(image):
    channels = image.shape[1]
    kernels = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1],
                            [-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=image.device).float()
    kernels = kernels.view(2, 1, 3, 3).repeat(channels, 1, 1, 1)
    padded_image = F.pad(image, (1, 1, 1, 1), mode='replicate')
    edge = F.conv2d(padded_image, kernels, groups=channels)
    return torch.sqrt(edge[:, :channels]**2 + edge[:, channels:]**2)

@torch.jit.script
def compute_loss(original_image, loss_type: str):
    if loss_type == 'blue':
        return torch.abs(original_image[:,2] - 0.9).mean()
    elif loss_type == 'edge':
        ed_value = edge_detection(original_image)
        return F.mse_loss(ed_value, (ed_value > 0.5).float())
    elif loss_type == 'contrast':
        transformed_image = T.functional.adjust_contrast(original_image, contrast_factor=2)
        return torch.abs(transformed_image - original_image).mean()
    elif loss_type == 'brightness':
        transformed_image = T.functional.adjust_brightness(original_image, brightness_factor=2)
        return torch.abs(transformed_image - original_image).mean()
    elif loss_type == 'sharpness':
        transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor=2)
        return torch.abs(transformed_image - original_image).mean()
    elif loss_type == 'saturation':
        transformed_image = T.functional.adjust_saturation(original_image, saturation_factor=10)
        return torch.abs(transformed_image - original_image).mean()
    else:
        return torch.tensor(0.0, device=original_image.device)

# Optimized generate_image function
@torch.cuda.amp.autocast()
def generate_image(seed, prompt, loss_type, loss_flag=False):
    generator = torch.manual_seed(seed)
    batch_size = 1

    text_embeddings = sd_pipeline._encode_prompt(prompt, sd_pipeline.device, 1, True)

    latents = torch.randn(
        (batch_size, sd_pipeline.unet.config.in_channels, height // 8, width // 8),
        generator=generator,
    ).to(sd_pipeline.device)

    latents = latents * sd_pipeline.scheduler.init_noise_sigma

    sd_pipeline.scheduler.set_timesteps(num_inference_steps)

    for i, t in enumerate(tqdm(sd_pipeline.scheduler.timesteps)):
        latent_model_input = torch.cat([latents] * 2)
        latent_model_input = sd_pipeline.scheduler.scale_model_input(latent_model_input, t)

        with torch.no_grad():
            noise_pred = sd_pipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        if loss_flag and i % 5 == 0:
            latents = latents.detach().requires_grad_()
            latents_x0 = sd_pipeline.scheduler.step(noise_pred, t, latents).pred_original_sample
            with torch.no_grad():
                denoised_images = sd_pipeline.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5

            loss = compute_loss(denoised_images, loss_type) * loss_scale
            print(f"Step {i}, Loss: {loss.item():.4f}")

            cond_grad = torch.autograd.grad(loss, latents)[0]
            latents = latents.detach() - cond_grad * sd_pipeline.scheduler.sigmas[i] ** 2

        latents = sd_pipeline.scheduler.step(noise_pred, t, latents).prev_sample

    return latents


# Gradio interface function
def generate_images(prompt, style, guidance_type):
    images = show_image(prompt, style, guidance_type)
    return images[0], images[1]

# Create Gradio interface
iface = gr.Interface(
    fn=generate_images,
    inputs=[
        gr.Textbox(label="Prompt"),
        gr.Dropdown(list(styles_mapping.keys()), label="Style"),
        gr.Dropdown(["blue", "edge", "contrast", "brightness", "sharpness", "saturation"], label="Guidance Type"),
    ],
    outputs=[
        gr.Image(label="Image without Loss"),
        gr.Image(label="Image with Loss"),
    ],
    examples=get_examples(),
    title="Text Inversion Image Generation",
    description="Generate images using text inversion with different styles and guidance types.",
)

# Launch the app
iface.launch()