File size: 8,531 Bytes
6c2fd08
4ca155b
 
02cf0bb
85585aa
0be31e9
 
 
 
 
 
324c98e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85585aa
4ca155b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85585aa
02cf0bb
4ca155b
02cf0bb
5ae24e1
 
 
 
 
 
 
 
 
 
02cf0bb
 
6c2fd08
85585aa
a075fee
02cf0bb
6c2fd08
85585aa
c78be87
 
 
 
 
 
 
 
0be31e9
324c98e
02cf0bb
85585aa
02cf0bb
 
 
4ca155b
85585aa
 
 
 
 
 
 
02cf0bb
85585aa
02cf0bb
324c98e
 
c78be87
324c98e
02cf0bb
0be31e9
324c98e
6c2fd08
324c98e
 
0be31e9
 
bdc217e
0be31e9
bdc217e
 
85585aa
c78be87
bdc217e
c78be87
bdc217e
 
 
 
 
 
 
c78be87
 
 
bdc217e
324c98e
bdc217e
 
 
324c98e
 
 
 
 
bdc217e
324c98e
bdc217e
 
324c98e
 
 
bdc217e
 
 
 
 
 
 
 
 
324c98e
bdc217e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
import asyncio 

# Add the post-processing function here
def post_process_text(text):
    # Ensure the text starts with a capital letter
    text = text.capitalize()
    
    # Remove any incomplete sentences at the end
    sentences = text.split('.')
    complete_sentences = sentences[:-1] if len(sentences) > 1 else sentences
    
    # Rejoin sentences and add a period if missing
    processed_text = '. '.join(complete_sentences)
    if not processed_text.endswith('.'):
        processed_text += '.'
    
    return processed_text
# Define the model architecture
class GPTConfig:
    def __init__(self):
        self.block_size = 1024
        self.vocab_size = 50304
        self.n_layer = 12
        self.n_head = 12
        self.n_embd = 768

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        return self.c_proj(y)

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)

    def forward(self, x):
        return self.c_proj(self.gelu(self.c_fc(x)))

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
        
        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = tok_emb + pos_emb
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)
        
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        
        return logits, loss

# Load the model
def load_model(model_path):
    config = GPTConfig()
    model = GPT(config)
    
    checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
    
    print("Checkpoint keys:", checkpoint.keys())  # Debug print
    
    if 'model_state_dict' in checkpoint:
        model.load_state_dict(checkpoint['model_state_dict'])
    else:
        model.load_state_dict(checkpoint)
    
    model.eval()
    return model

# Load the model
model = load_model('gpt_model.pth')  # Replace with the actual path to your .pt file
enc = tiktoken.get_encoding('gpt2')

# Improved text generation function
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr

# [Your existing model code remains unchanged]

# Modify the generate_text function to be asynchronous
async def generate_text(prompt, max_length=432, temperature=0.8, top_k=40):
    input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
    generated = []
    
    with torch.no_grad():
        for _ in range(max_length):
            outputs, _ = model(input_ids)
            next_token_logits = outputs[:, -1, :]
            next_token_logits = next_token_logits / temperature
            top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
            next_token_probs = F.softmax(top_k_logits, dim=-1)
            next_token_index = torch.multinomial(next_token_probs, num_samples=1)
            next_token = top_k_indices.gather(-1, next_token_index)
            
            input_ids = torch.cat([input_ids, next_token], dim=-1)
            generated.append(next_token.item())
            
            next_token_str = enc.decode([next_token.item()])
            yield next_token_str
            
            if next_token.item() == enc.encode('\n')[0] and len(generated) > 100:
                break
            
            await asyncio.sleep(0.02)  # Slightly faster typing effect

    if len(generated) == max_length:
        yield "... (output truncated due to length)"
# Modify the gradio_generate function to be asynchronous
async def gradio_generate(prompt, max_length, temperature, top_k):
    output = ""
    async for token in generate_text(prompt, max_length, temperature, top_k):
        output += token
        yield output

# Custom CSS for the animation effect
css = """
<style>
    body { background-color: #1e1e1e; color: #ffffff; font-family: Arial, sans-serif; }
    .container { max-width: 800px; margin: 0 auto; padding: 20px; }
    .header { text-align: center; margin-bottom: 30px; }
    .chat-box { background-color: #2a2a2a; border-radius: 10px; padding: 20px; margin-bottom: 20px; }
    .user-input { background-color: #3a3a3a; border: none; color: #ffffff; padding: 10px; border-radius: 5px; width: 100%; }
    .generate-btn { background-color: #5465ff; color: white; border: none; padding: 10px 20px; border-radius: 5px; cursor: pointer; }
    .output-box { background-color: #2a2a2a; border-radius: 10px; padding: 20px; margin-top: 20px; min-height: 100px; }
</style>
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<div class='header'><h1>🌟 GPT-2 Storyteller</h1></div>")
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                placeholder="Start your story here (e.g., 'Once upon a time in a magical forest...')",
                label="Story Prompt",
                elem_classes="user-input"
            )
        with gr.Column(scale=1):
            generate_btn = gr.Button("Generate Story", elem_classes="generate-btn")
    
    with gr.Row():
        max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Max Length")
        temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature")
        top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k")
    
    output = gr.Markdown(elem_classes="output-box")
    
    generate_btn.click(
        gradio_generate,
        inputs=[prompt, max_length, temperature, top_k],
        outputs=output
    )


if __name__ == "__main__":
    demo.launch()