Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,9 +10,9 @@ import subprocess
|
|
10 |
import numpy as np
|
11 |
from typing import List, Dict, Tuple, Any, Optional, Union
|
12 |
from functools import lru_cache
|
13 |
-
# No asyncio needed
|
14 |
import threading
|
15 |
-
# No ThreadPoolExecutor needed
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
import re # For text cleaning
|
@@ -30,58 +30,36 @@ MAX_NEW_TOKENS = 300
|
|
30 |
TEMPERATURE = 0.7
|
31 |
TOP_P = 0.95
|
32 |
KOKORO_PATH = 'Kokoro-82M'
|
33 |
-
|
34 |
-
|
35 |
-
TTS_GPU_DURATION = 45 # Seconds (adjust based on expected TTS generation time)
|
36 |
|
37 |
# --- Initialization ---
|
38 |
-
# Suppress specific warnings
|
39 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
40 |
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
41 |
|
42 |
# --- LLM Initialization ---
|
43 |
llm_model: Optional[AutoModelForCausalLM] = None
|
44 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
45 |
-
llm_device = "cpu"
|
46 |
-
|
47 |
try:
|
48 |
print("[LLM Init] Initializing Language Model...")
|
49 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
50 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
51 |
-
|
52 |
-
# For ZeroGPU, we assume GPU will be available when needed, load with cuda preference
|
53 |
-
# If running locally without GPU, it might try CPU based on device_map="auto" fallback
|
54 |
-
llm_device = "cuda" if torch.cuda.is_available() else "cpu" # Check initial availability info
|
55 |
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32
|
56 |
-
# device_map="auto" is generally okay, ZeroGPU handles the actual assignment during decorated function call
|
57 |
device_map = "auto"
|
58 |
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})")
|
59 |
-
|
60 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
61 |
-
MODEL_NAME,
|
62 |
-
device_map=device_map, # Let accelerate/ZeroGPU handle placement
|
63 |
-
low_cpu_mem_usage=True,
|
64 |
-
torch_dtype=torch_dtype,
|
65 |
)
|
66 |
-
print(f"[LLM Init] LLM loaded configuration successfully.
|
67 |
llm_model.eval()
|
68 |
-
|
69 |
except Exception as e:
|
70 |
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
|
71 |
-
print(traceback.format_exc())
|
72 |
-
llm_model = None
|
73 |
-
llm_tokenizer = None
|
74 |
print("[LLM Init] LLM features will be unavailable.")
|
75 |
|
76 |
-
|
77 |
# --- TTS Initialization ---
|
78 |
-
|
79 |
-
VOICE_CHOICES = {
|
80 |
-
'๐บ๐ธ Female (Default)': 'af',
|
81 |
-
'๐บ๐ธ Bella': 'af_bella',
|
82 |
-
'๐บ๐ธ Sarah': 'af_sarah',
|
83 |
-
'๐บ๐ธ Nicole': 'af_nicole'
|
84 |
-
}
|
85 |
TTS_ENABLED = False
|
86 |
tts_model: Optional[Any] = None
|
87 |
voicepacks: Dict[str, Any] = {}
|
@@ -92,18 +70,15 @@ def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = Non
|
|
92 |
print(f"Running command: {' '.join(cmd)}")
|
93 |
try:
|
94 |
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
|
|
95 |
if not check or result.returncode != 0:
|
96 |
-
|
97 |
-
|
98 |
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
99 |
-
|
100 |
return result
|
101 |
-
except FileNotFoundError:
|
102 |
-
|
103 |
-
raise
|
104 |
-
except subprocess.TimeoutExpired:
|
105 |
-
print(f" Error: Command timed out - {' '.join(cmd)}")
|
106 |
-
raise
|
107 |
except subprocess.CalledProcessError as e:
|
108 |
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
|
109 |
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
|
@@ -111,400 +86,277 @@ def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = Non
|
|
111 |
raise
|
112 |
|
113 |
def setup_tts_task():
|
114 |
-
"""Initializes Kokoro TTS model and dependencies."""
|
115 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
116 |
print("[TTS Setup] Starting background initialization...")
|
117 |
-
|
118 |
-
|
119 |
-
# If decorated with @spaces.GPU, it will use CUDA when called.
|
120 |
-
tts_device = "cuda" # Assume it will run on GPU via decorator
|
121 |
-
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device}")
|
122 |
-
|
123 |
can_sudo = shutil.which('sudo') is not None
|
124 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
125 |
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
|
126 |
-
|
127 |
try:
|
128 |
# 1. Clone/Update Repo
|
129 |
if not os.path.exists(absolute_kokoro_path):
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
else:
|
138 |
-
print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
|
139 |
|
140 |
# 2. Install espeak
|
141 |
print("[TTS Setup] Checking/Installing espeak...")
|
142 |
-
try:
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
except Exception:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
print("[TTS Setup] espeak installed or already present.")
|
151 |
-
except Exception as espeak_err:
|
152 |
-
print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled.")
|
153 |
-
return
|
154 |
|
155 |
# 3. Load Kokoro Model and Voices
|
156 |
sys_path_updated = False
|
157 |
if os.path.exists(absolute_kokoro_path):
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
loaded_voices = 0
|
193 |
-
for voice_name, voice_id in VOICE_CHOICES.items():
|
194 |
-
voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
|
195 |
-
if os.path.exists(voice_file_path):
|
196 |
-
try:
|
197 |
-
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name}) to CPU")
|
198 |
-
voicepacks[voice_id] = torch.load(voice_file_path, map_location='cpu') # <<< Load to CPU
|
199 |
-
loaded_voices += 1
|
200 |
-
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
201 |
-
else: print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")
|
202 |
-
|
203 |
-
if loaded_voices == 0:
|
204 |
-
print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled.")
|
205 |
-
tts_model = None; return
|
206 |
-
|
207 |
-
TTS_ENABLED = True
|
208 |
-
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
209 |
-
|
210 |
-
except ImportError as ie:
|
211 |
-
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
|
212 |
-
print(traceback.format_exc())
|
213 |
-
except Exception as load_err:
|
214 |
-
print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
|
215 |
-
print(traceback.format_exc())
|
216 |
-
finally:
|
217 |
-
if sys_path_updated: # Cleanup sys.path
|
218 |
-
try:
|
219 |
-
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0)
|
220 |
-
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path)
|
221 |
-
print(f"[TTS Setup] Cleaned up sys.path.")
|
222 |
-
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}")
|
223 |
-
else:
|
224 |
-
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
225 |
-
|
226 |
-
except Exception as e:
|
227 |
-
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
228 |
-
print(traceback.format_exc())
|
229 |
-
TTS_ENABLED = False; tts_model = None; voicepacks.clear()
|
230 |
|
231 |
-
# Start TTS setup thread
|
232 |
print("Starting TTS setup thread...")
|
233 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
234 |
tts_setup_thread.start()
|
235 |
|
236 |
-
|
237 |
-
# --- Core Logic Functions (SYNCHRONOUS + @spaces.GPU) ---
|
238 |
-
|
239 |
-
# Web search remains synchronous
|
240 |
@lru_cache(maxsize=128)
|
241 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
242 |
"""Synchronous web search function with caching."""
|
243 |
-
# (Implementation remains the same as before)
|
244 |
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
245 |
try:
|
246 |
with DDGS() as ddgs:
|
247 |
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
248 |
print(f"[Web Search] Found {len(results)} results.")
|
249 |
-
formatted = [{
|
250 |
-
"id": i + 1, "title": res.get("title", "No Title"),
|
251 |
-
"snippet": res.get("body", "No Snippet"), "url": res.get("href", "#"),
|
252 |
-
} for i, res in enumerate(results)]
|
253 |
return formatted
|
254 |
-
except Exception as e:
|
255 |
-
print(f"[Web Search] Error: {e}"); return []
|
256 |
|
257 |
-
# Prompt formatting remains the same
|
258 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
259 |
"""Formats the prompt for the LLM."""
|
260 |
-
# (Implementation remains the same as before)
|
261 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
262 |
-
context_str = "\n\n".join(
|
263 |
-
|
264 |
-
) if context else "No relevant web context found."
|
265 |
-
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
|
266 |
-
|
267 |
-
CONTEXT:
|
268 |
-
---
|
269 |
-
{context_str}
|
270 |
-
---
|
271 |
|
272 |
-
USER: {html.escape(query)}
|
273 |
-
|
274 |
-
ASSISTANT:"""
|
275 |
-
|
276 |
-
# Source formatting remains the same
|
277 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
278 |
"""Formats search results into HTML for display."""
|
279 |
-
# (Implementation remains the same as before)
|
280 |
if not web_results: return "<div class='no-sources'>No sources found.</div>"
|
281 |
items_html = ""
|
282 |
for res in web_results:
|
283 |
-
title_safe = html.escape(res.get("title", "Source"))
|
284 |
-
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
285 |
-
url = html.escape(res.get("url", "#"))
|
286 |
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>"""
|
287 |
return f"<div class='sources-container'>{items_html}</div>"
|
288 |
|
289 |
-
|
290 |
-
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
|
291 |
@spaces.GPU(duration=LLM_GPU_DURATION)
|
292 |
def generate_llm_answer(prompt: str) -> str:
|
293 |
"""Generates answer using the LLM (Synchronous, GPU-decorated)."""
|
294 |
-
if not llm_model or not llm_tokenizer:
|
295 |
-
print("[LLM Generate] LLM model or tokenizer not available.")
|
296 |
-
return "Error: Language Model is not available."
|
297 |
-
|
298 |
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...")
|
299 |
start_time = time.time()
|
300 |
try:
|
301 |
-
#
|
302 |
-
|
303 |
-
|
304 |
-
current_device = next(llm_model.parameters()).device
|
305 |
-
print(f"[LLM Generate] Model currently on device: {current_device}") # Debug device
|
306 |
-
|
307 |
-
inputs = llm_tokenizer(
|
308 |
-
prompt, return_tensors="pt", padding=True, truncation=True,
|
309 |
-
max_length=1024, return_attention_mask=True
|
310 |
-
).to(current_device) # Send input to model's device
|
311 |
-
|
312 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
318 |
-
temperature=TEMPERATURE, top_p=TOP_P,
|
319 |
-
pad_token_id=llm_tokenizer.eos_token_id,
|
320 |
-
eos_token_id=llm_tokenizer.eos_token_id,
|
321 |
-
do_sample=True, num_return_sequences=1
|
322 |
-
)
|
323 |
-
|
324 |
-
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
325 |
-
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
326 |
-
if not answer_part: answer_part = "*Model generated an empty response.*"
|
327 |
-
|
328 |
-
end_time = time.time()
|
329 |
-
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
330 |
return answer_part
|
|
|
331 |
|
332 |
-
except Exception as e:
|
333 |
-
print(f"[LLM Generate] Error: {e}")
|
334 |
-
print(traceback.format_exc())
|
335 |
-
return f"Error during answer generation: Check logs."
|
336 |
-
|
337 |
-
|
338 |
-
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
|
339 |
@spaces.GPU(duration=TTS_GPU_DURATION)
|
340 |
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
341 |
-
"""Generates speech using TTS model (Synchronous, GPU-decorated)."""
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
if not
|
346 |
-
print("[TTS Generate] Skipping: Invalid or empty text.")
|
347 |
-
return None
|
348 |
|
349 |
-
print(f"[TTS Generate] Requesting speech (sync, GPU) (
|
350 |
start_time = time.time()
|
351 |
|
|
|
|
|
|
|
|
|
|
|
352 |
try:
|
|
|
353 |
actual_voice_id = voice_id
|
354 |
if voice_id not in voicepacks:
|
355 |
-
print(f"[TTS Generate]
|
356 |
actual_voice_id = 'af'
|
357 |
-
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af'
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL)
|
362 |
-
clean_text = re.sub(r'`[^`]*`', '', clean_text)
|
363 |
-
clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE)
|
364 |
-
clean_text = re.sub(r'[\*#_]', '', clean_text)
|
365 |
-
clean_text = html.unescape(clean_text)
|
366 |
-
clean_text = ' '.join(clean_text.split())
|
367 |
|
|
|
|
|
|
|
368 |
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None
|
369 |
|
|
|
370 |
if len(clean_text) > MAX_TTS_CHARS:
|
371 |
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
372 |
-
clean_text = clean_text[:MAX_TTS_CHARS]
|
373 |
-
last_punct = max(clean_text.rfind(p) for p in '.?!; ')
|
374 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
375 |
clean_text += "..."
|
376 |
|
377 |
-
|
|
|
|
|
378 |
gen_func = globals()['generate_tts_internal']
|
379 |
-
|
380 |
|
381 |
-
# *** Crucial for ZeroGPU: Move TTS model and voicepack to CUDA within the decorated function ***
|
382 |
-
current_device = 'cuda' # Assume GPU is attached by decorator
|
383 |
try:
|
384 |
-
|
|
|
385 |
tts_model.to(current_device)
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
elif isinstance(voice_pack_data, torch.Tensor):
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
#
|
396 |
-
audio_data,
|
397 |
-
|
|
|
|
|
|
|
|
|
398 |
finally:
|
399 |
-
#
|
400 |
-
# ZeroGPU might handle this, but explicit move-back can be safer if running locally too
|
401 |
try:
|
402 |
print("[TTS Generate] Moving TTS model back to CPU...")
|
403 |
-
tts_model.to('cpu')
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
elif isinstance(audio_data, np.ndarray):
|
412 |
-
|
|
|
413 |
audio_np = audio_np.flatten().astype(np.float32)
|
414 |
-
|
415 |
-
|
416 |
-
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s.
|
417 |
-
|
|
|
|
|
418 |
|
419 |
except Exception as e:
|
420 |
-
print(f"[TTS Generate]
|
421 |
-
print(traceback.format_exc())
|
422 |
-
return None
|
423 |
|
424 |
-
# Voice ID mapping remains same
|
425 |
def get_voice_id_from_display(voice_display_name: str) -> str:
|
|
|
426 |
return VOICE_CHOICES.get(voice_display_name, 'af')
|
427 |
|
428 |
-
|
429 |
-
# --- Gradio Interaction Logic (SYNCHRONOUS) ---
|
430 |
ChatHistoryType = List[Dict[str, Optional[str]]]
|
431 |
|
432 |
def handle_interaction(
|
433 |
query: str,
|
434 |
history: ChatHistoryType,
|
435 |
selected_voice_display_name: str
|
436 |
-
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]:
|
437 |
"""Synchronous function to handle user queries for ZeroGPU."""
|
438 |
-
print(f"\n--- Handling Query (Sync) ---")
|
439 |
-
query = query.strip()
|
440 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
|
|
441 |
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
return history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
446 |
-
|
447 |
-
# Initial state updates (won't be seen until the end in Gradio)
|
448 |
-
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
|
449 |
-
current_history.append({"role": "assistant", "content": "*Processing... Please wait.*"}) # Placeholder
|
450 |
-
status_update = "*Processing... Please wait.*"
|
451 |
-
sources_html = "<div class='searching'><span>Searching & Processing...</span></div>"
|
452 |
-
audio_data = None
|
453 |
-
button_update = gr.Button(value="Processing...", interactive=False) # Disabled during processing
|
454 |
|
455 |
-
# --- Start Blocking Operations ---
|
456 |
try:
|
457 |
-
|
458 |
-
print("[Handler]
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
# 2. Generate LLM Answer (Sync, Decorated)
|
463 |
-
print("[Handler] Generating LLM answer...")
|
464 |
-
status_update = "*Generating answer...*" # Update status text
|
465 |
-
# (UI won't update here yet)
|
466 |
llm_prompt = format_llm_prompt(query, web_results)
|
467 |
-
final_answer = generate_llm_answer(llm_prompt)
|
468 |
-
status_update = final_answer
|
469 |
|
470 |
-
# 3. Generate TTS Speech (Sync, Decorated, Optional)
|
471 |
tts_status_message = ""
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
# (UI won't update here yet)
|
476 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
477 |
-
audio_data = generate_tts_speech(final_answer, voice_id) #
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
final_answer_with_status = final_answer + tts_status_message
|
486 |
status_update = final_answer_with_status
|
487 |
-
current_history[-1]["content"] = final_answer_with_status # Update history
|
488 |
|
489 |
-
button_update = gr.Button(value="Search", interactive=True)
|
490 |
print("--- Query Handling Complete (Sync) ---")
|
491 |
|
492 |
except Exception as e:
|
493 |
-
print(f"[Handler] Error
|
494 |
-
|
495 |
-
error_message =
|
496 |
-
|
497 |
-
status_update = error_message
|
498 |
-
sources_html = "<div class='error'>Request failed.</div>"
|
499 |
-
audio_data = None
|
500 |
-
button_update = gr.Button(value="Search", interactive=True) # Re-enable button on error
|
501 |
-
|
502 |
-
# Return the final state tuple for all outputs
|
503 |
-
return current_history, status_update, sources_html, audio_data, button_update
|
504 |
|
|
|
|
|
505 |
|
506 |
# --- Gradio UI Definition ---
|
507 |
-
# (CSS remains the same)
|
508 |
css = """
|
509 |
/* ... [Your existing refined CSS] ... */
|
510 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
@@ -523,17 +375,17 @@ css = """
|
|
523 |
.search-box button:hover { background: #1d4ed8 !important; }
|
524 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
525 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
526 |
-
.answer-box {
|
527 |
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
528 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
529 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
530 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
531 |
.sources-container { margin-top: 0; }
|
532 |
-
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6;
|
533 |
.source-item:last-child { border-bottom: none; }
|
534 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
535 |
-
.source-content { flex: 1; min-width: 0;}
|
536 |
-
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px;
|
537 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
538 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
539 |
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
@@ -542,25 +394,13 @@ css = """
|
|
542 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
543 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
544 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
545 |
-
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important;
|
546 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
547 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
548 |
-
|
549 |
-
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
|
550 |
-
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
|
551 |
-
.markdown-content h3 { font-size: 1.2em !important; }
|
552 |
-
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
|
553 |
-
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
|
554 |
-
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
|
555 |
-
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
|
556 |
-
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
|
557 |
-
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
|
558 |
-
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
559 |
-
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
560 |
-
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
561 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
562 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
563 |
-
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important;
|
564 |
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
|
565 |
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
566 |
.audio-player audio { width: 100% !important; }
|
@@ -570,119 +410,35 @@ css = """
|
|
570 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
571 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
572 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
573 |
-
/* Dark Mode Styles */
|
574 |
.dark .gradio-container { background-color: #111827 !important; }
|
575 |
-
|
576 |
-
.dark #header h3 { color: #9ca3af; }
|
577 |
-
.dark .search-container { background: #1f2937; border-color: #374151; }
|
578 |
-
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
|
579 |
-
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
|
580 |
-
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
|
581 |
-
.dark .search-box button { background: #3b82f6 !important; }
|
582 |
-
.dark .search-box button:hover { background: #2563eb !important; }
|
583 |
-
.dark .search-box button:disabled { background: #4b5563 !important; }
|
584 |
-
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
|
585 |
-
.dark .answer-box p { color: #d1d5db; }
|
586 |
-
.dark .answer-box code { background: #374151; color: #9ca3af; }
|
587 |
-
.dark .sources-box { background: #1f2937; border-color: #374151; }
|
588 |
-
.dark .sources-box h3 { color: #f9fafb; }
|
589 |
-
.dark .source-item { border-bottom-color: #374151; }
|
590 |
-
.dark .source-item:hover { background-color: #374151; }
|
591 |
-
.dark .source-number { color: #9ca3af; }
|
592 |
-
.dark .source-title { color: #60a5fa; }
|
593 |
-
.dark .source-title:hover { color: #93c5fd; }
|
594 |
-
.dark .source-snippet { color: #d1d5db; }
|
595 |
-
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
|
596 |
-
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
|
597 |
-
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
|
598 |
-
.dark .examples-container { background: #374151; border-color: #4b5563; }
|
599 |
-
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
|
600 |
-
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
|
601 |
-
.dark .markdown-content { color: #d1d5db !important; }
|
602 |
-
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
|
603 |
-
.dark .markdown-content a { color: #60a5fa !important; }
|
604 |
-
.dark .markdown-content a:hover { color: #93c5fd !important; }
|
605 |
-
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
|
606 |
-
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
|
607 |
-
.dark .markdown-content pre code { background: transparent !important; }
|
608 |
-
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
609 |
-
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
610 |
-
.dark .markdown-content th { background: #374151 !important; }
|
611 |
-
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
612 |
-
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
613 |
-
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
614 |
-
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
|
615 |
-
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
|
616 |
-
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
|
617 |
-
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
|
618 |
-
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
|
619 |
-
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
|
620 |
-
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
621 |
"""
|
622 |
|
623 |
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
624 |
chat_history_state = gr.State([])
|
625 |
-
|
626 |
with gr.Column():
|
627 |
-
with gr.Column(elem_id="header"):
|
628 |
-
gr.Markdown("# ๐ AI Search Assistant (ZeroGPU Version)")
|
629 |
-
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
630 |
-
gr.Markdown("*(UI will block during processing for ZeroGPU compatibility)*")
|
631 |
-
|
632 |
with gr.Column(elem_classes="search-container"):
|
633 |
with gr.Row(elem_classes="search-box"):
|
634 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
635 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
636 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
637 |
-
|
638 |
with gr.Row(elem_classes="results-container"):
|
639 |
with gr.Column(scale=3):
|
640 |
-
chatbot_display = gr.Chatbot(
|
641 |
-
|
642 |
-
elem_classes="chat-history", type="messages", show_label=False,
|
643 |
-
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png")
|
644 |
-
)
|
645 |
-
# This Markdown will only show the *final* status/answer text
|
646 |
-
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
647 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
648 |
-
|
649 |
with gr.Column(scale=2):
|
650 |
-
with gr.Column(elem_classes="sources-box"):
|
651 |
-
|
652 |
-
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
|
653 |
-
|
654 |
-
with gr.Row(elem_classes="examples-container"):
|
655 |
-
gr.Examples(
|
656 |
-
examples=[ "Latest news about renewable energy", "Explain Large Language Models (LLMs)",
|
657 |
-
"Symptoms and prevention tips for the flu", "Compare Python and JavaScript",
|
658 |
-
"Summarize the Paris Agreement", ],
|
659 |
-
inputs=search_input, label="Try these examples:",
|
660 |
-
)
|
661 |
-
|
662 |
-
# --- Event Handling Setup (Synchronous) ---
|
663 |
event_inputs = [search_input, chat_history_state, voice_select]
|
664 |
-
event_outputs = [ chatbot_display, answer_status_output, sources_output_html,
|
665 |
-
|
666 |
-
|
667 |
-
# Connect the SYNCHRONOUS handle_interaction function directly
|
668 |
-
search_btn.click(
|
669 |
-
fn=handle_interaction, # Use the synchronous handler
|
670 |
-
inputs=event_inputs,
|
671 |
-
outputs=event_outputs
|
672 |
-
)
|
673 |
-
search_input.submit(
|
674 |
-
fn=handle_interaction, # Use the synchronous handler
|
675 |
-
inputs=event_inputs,
|
676 |
-
outputs=event_outputs
|
677 |
-
)
|
678 |
|
679 |
-
# --- Main Execution ---
|
680 |
if __name__ == "__main__":
|
681 |
print("Starting Gradio application (Synchronous for ZeroGPU)...")
|
682 |
-
#
|
683 |
-
|
684 |
-
demo.queue(max_size=20).launch(
|
685 |
-
debug=True,
|
686 |
-
share=True,
|
687 |
-
)
|
688 |
print("Gradio application stopped.")
|
|
|
10 |
import numpy as np
|
11 |
from typing import List, Dict, Tuple, Any, Optional, Union
|
12 |
from functools import lru_cache
|
13 |
+
# No asyncio needed
|
14 |
import threading
|
15 |
+
# No ThreadPoolExecutor needed
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
import re # For text cleaning
|
|
|
30 |
TEMPERATURE = 0.7
|
31 |
TOP_P = 0.95
|
32 |
KOKORO_PATH = 'Kokoro-82M'
|
33 |
+
LLM_GPU_DURATION = 120 # Seconds
|
34 |
+
TTS_GPU_DURATION = 60 # Seconds
|
|
|
35 |
|
36 |
# --- Initialization ---
|
|
|
37 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
38 |
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
39 |
|
40 |
# --- LLM Initialization ---
|
41 |
llm_model: Optional[AutoModelForCausalLM] = None
|
42 |
llm_tokenizer: Optional[AutoTokenizer] = None
|
|
|
|
|
43 |
try:
|
44 |
print("[LLM Init] Initializing Language Model...")
|
45 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
46 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
47 |
+
llm_device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
48 |
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32
|
|
|
49 |
device_map = "auto"
|
50 |
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})")
|
|
|
51 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
MODEL_NAME, device_map=device_map, low_cpu_mem_usage=True, torch_dtype=torch_dtype,
|
|
|
|
|
|
|
53 |
)
|
54 |
+
print(f"[LLM Init] LLM loaded configuration successfully.")
|
55 |
llm_model.eval()
|
|
|
56 |
except Exception as e:
|
57 |
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
|
58 |
+
print(traceback.format_exc()); llm_model = None; llm_tokenizer = None
|
|
|
|
|
59 |
print("[LLM Init] LLM features will be unavailable.")
|
60 |
|
|
|
61 |
# --- TTS Initialization ---
|
62 |
+
VOICE_CHOICES = { '๐บ๐ธ Female (Default)': 'af', '๐บ๐ธ Bella': 'af_bella', '๐บ๐ธ Sarah': 'af_sarah', '๐บ๐ธ Nicole': 'af_nicole' }
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
TTS_ENABLED = False
|
64 |
tts_model: Optional[Any] = None
|
65 |
voicepacks: Dict[str, Any] = {}
|
|
|
70 |
print(f"Running command: {' '.join(cmd)}")
|
71 |
try:
|
72 |
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
73 |
+
# Print output more selectively
|
74 |
if not check or result.returncode != 0:
|
75 |
+
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
|
76 |
+
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
|
77 |
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
78 |
+
print(f" Command successful.")
|
79 |
return result
|
80 |
+
except FileNotFoundError: print(f" Error: Command not found - {cmd[0]}"); raise
|
81 |
+
except subprocess.TimeoutExpired: print(f" Error: Command timed out - {' '.join(cmd)}"); raise
|
|
|
|
|
|
|
|
|
82 |
except subprocess.CalledProcessError as e:
|
83 |
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
|
84 |
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
|
|
|
86 |
raise
|
87 |
|
88 |
def setup_tts_task():
|
89 |
+
"""Initializes Kokoro TTS model and dependencies (runs in background)."""
|
90 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
91 |
print("[TTS Setup] Starting background initialization...")
|
92 |
+
tts_device_target = "cuda" # Target device when GPU is attached by decorator
|
93 |
+
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device_target}")
|
|
|
|
|
|
|
|
|
94 |
can_sudo = shutil.which('sudo') is not None
|
95 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
96 |
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
|
|
|
97 |
try:
|
98 |
# 1. Clone/Update Repo
|
99 |
if not os.path.exists(absolute_kokoro_path):
|
100 |
+
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
|
101 |
+
try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
102 |
+
except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}")
|
103 |
+
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
|
104 |
+
try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
105 |
+
except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
106 |
+
else: print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
|
|
|
|
|
107 |
|
108 |
# 2. Install espeak
|
109 |
print("[TTS Setup] Checking/Installing espeak...")
|
110 |
+
try:
|
111 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
112 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
113 |
+
print("[TTS Setup] espeak-ng installed or already present.")
|
114 |
except Exception:
|
115 |
+
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
|
116 |
+
try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak']); print("[TTS Setup] espeak installed or already present.")
|
117 |
+
except Exception as espeak_err: print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled."); return
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# 3. Load Kokoro Model and Voices
|
120 |
sys_path_updated = False
|
121 |
if os.path.exists(absolute_kokoro_path):
|
122 |
+
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}");
|
123 |
+
try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}")
|
124 |
+
except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
|
125 |
+
if absolute_kokoro_path not in sys.path: sys.path.insert(0, absolute_kokoro_path); sys_path_updated = True; print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
|
126 |
+
try:
|
127 |
+
print("[TTS Setup] Attempting to import Kokoro modules...")
|
128 |
+
from models import build_model
|
129 |
+
from kokoro import generate as generate_tts_internal
|
130 |
+
print("[TTS Setup] Kokoro modules imported successfully.")
|
131 |
+
globals()['build_model'] = build_model; globals()['generate_tts_internal'] = generate_tts_internal
|
132 |
+
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
|
133 |
+
if not os.path.exists(model_file): print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled."); return
|
134 |
+
print(f"[TTS Setup] Loading TTS model config from {model_file} (to CPU first)...")
|
135 |
+
tts_model = build_model(model_file, 'cpu'); tts_model.eval(); print("[TTS Setup] TTS model structure loaded (CPU).")
|
136 |
+
loaded_voices = 0
|
137 |
+
for voice_name, voice_id in VOICE_CHOICES.items():
|
138 |
+
vp_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
|
139 |
+
if os.path.exists(vp_path):
|
140 |
+
try: voicepacks[voice_id] = torch.load(vp_path, map_location='cpu'); loaded_voices += 1; print(f"[TTS Setup] Loaded voice: {voice_id} ({voice_name}) to CPU")
|
141 |
+
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
142 |
+
else: print(f"[TTS Setup] Info: Voice file {vp_path} not found.")
|
143 |
+
if loaded_voices == 0: print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled."); tts_model = None; return
|
144 |
+
TTS_ENABLED = True; print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
145 |
+
except ImportError as ie: print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}."); print(traceback.format_exc())
|
146 |
+
except Exception as load_err: print(f"[TTS Setup] ERROR: Exception during TTS loading: {load_err}. TTS disabled."); print(traceback.format_exc())
|
147 |
+
finally:
|
148 |
+
if sys_path_updated: # Cleanup sys.path
|
149 |
+
try:
|
150 |
+
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0)
|
151 |
+
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path)
|
152 |
+
print(f"[TTS Setup] Cleaned up sys.path.")
|
153 |
+
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}")
|
154 |
+
else: print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
155 |
+
except Exception as e: print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}"); print(traceback.format_exc()); TTS_ENABLED = False; tts_model = None; voicepacks.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
157 |
print("Starting TTS setup thread...")
|
158 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
159 |
tts_setup_thread.start()
|
160 |
|
161 |
+
# --- Core Logic Functions (Synchronous + @spaces.GPU) ---
|
|
|
|
|
|
|
162 |
@lru_cache(maxsize=128)
|
163 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
164 |
"""Synchronous web search function with caching."""
|
|
|
165 |
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
166 |
try:
|
167 |
with DDGS() as ddgs:
|
168 |
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
169 |
print(f"[Web Search] Found {len(results)} results.")
|
170 |
+
formatted = [{"id": i + 1, "title": res.get("title", "No Title"), "snippet": res.get("body", "No Snippet"), "url": res.get("href", "#")} for i, res in enumerate(results)]
|
|
|
|
|
|
|
171 |
return formatted
|
172 |
+
except Exception as e: print(f"[Web Search] Error: {e}"); return []
|
|
|
173 |
|
|
|
174 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
175 |
"""Formats the prompt for the LLM."""
|
|
|
176 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
177 |
+
context_str = "\n\n".join([f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]) if context else "No relevant web context found."
|
178 |
+
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}\n\nCONTEXT:\n---\n{context_str}\n---\n\nUSER: {html.escape(query)}\n\nASSISTANT:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
|
|
|
|
|
|
|
|
|
|
180 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
181 |
"""Formats search results into HTML for display."""
|
|
|
182 |
if not web_results: return "<div class='no-sources'>No sources found.</div>"
|
183 |
items_html = ""
|
184 |
for res in web_results:
|
185 |
+
title_safe = html.escape(res.get("title", "Source")); snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")); url = html.escape(res.get("url", "#"))
|
|
|
|
|
186 |
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>"""
|
187 |
return f"<div class='sources-container'>{items_html}</div>"
|
188 |
|
|
|
|
|
189 |
@spaces.GPU(duration=LLM_GPU_DURATION)
|
190 |
def generate_llm_answer(prompt: str) -> str:
|
191 |
"""Generates answer using the LLM (Synchronous, GPU-decorated)."""
|
192 |
+
if not llm_model or not llm_tokenizer: print("[LLM Generate] LLM unavailable."); return "Error: Language Model unavailable."
|
|
|
|
|
|
|
193 |
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...")
|
194 |
start_time = time.time()
|
195 |
try:
|
196 |
+
# ZeroGPU context should place model on GPU here
|
197 |
+
current_device = next(llm_model.parameters()).device; print(f"[LLM Generate] Model device: {current_device}")
|
198 |
+
inputs = llm_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, return_attention_mask=True).to(current_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
200 |
+
outputs = llm_model.generate(inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=llm_tokenizer.eos_token_id, eos_token_id=llm_tokenizer.eos_token_id, do_sample=True, num_return_sequences=1)
|
201 |
+
output_ids = outputs[0][inputs.input_ids.shape[1]:]; answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
202 |
+
if not answer_part: answer_part = "*Model generated empty response.*"
|
203 |
+
end_time = time.time(); print(f"[LLM Generate] Complete in {end_time - start_time:.2f}s.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
return answer_part
|
205 |
+
except Exception as e: print(f"[LLM Generate] Error: {e}"); print(traceback.format_exc()); return f"Error generating answer."
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
@spaces.GPU(duration=TTS_GPU_DURATION)
|
208 |
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
209 |
+
"""Generates speech using TTS model (Synchronous, GPU-decorated) with debugging."""
|
210 |
+
# 1. Check initial state
|
211 |
+
if not TTS_ENABLED: print("[TTS Generate] Skipping: TTS is not enabled."); return None
|
212 |
+
if not tts_model: print("[TTS Generate] Skipping: TTS model object is None."); return None
|
213 |
+
if 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: generate_tts_internal not found."); return None
|
|
|
|
|
214 |
|
215 |
+
print(f"[TTS Generate] Requesting speech (sync, GPU) for text (len {len(text)}), req voice '{voice_id}'...")
|
216 |
start_time = time.time()
|
217 |
|
218 |
+
# 2. Check input text validity
|
219 |
+
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"):
|
220 |
+
print(f"[TTS Generate] Skipping: Invalid/empty text: '{text[:100]}...'")
|
221 |
+
return None
|
222 |
+
|
223 |
try:
|
224 |
+
# 3. Verify and select voice pack
|
225 |
actual_voice_id = voice_id
|
226 |
if voice_id not in voicepacks:
|
227 |
+
print(f"[TTS Generate] Warn: Voice '{voice_id}' missing. Trying 'af'. Available: {list(voicepacks.keys())}")
|
228 |
actual_voice_id = 'af'
|
229 |
+
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' missing."); return None
|
230 |
+
print(f"[TTS Generate] Using voice_id: {actual_voice_id}")
|
231 |
+
voice_pack_data = voicepacks[actual_voice_id]
|
232 |
+
if voice_pack_data is None: print(f"[TTS Generate] Error: Voice pack data for '{actual_voice_id}' is None."); return None
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
+
# 4. Clean text
|
235 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text); clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL); clean_text = re.sub(r'`[^`]*`', '', clean_text); clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE); clean_text = re.sub(r'[\*#_]', '', clean_text); clean_text = html.unescape(clean_text); clean_text = ' '.join(clean_text.split())
|
236 |
+
print(f"[TTS Generate] Cleaned text (first 100): '{clean_text[:100]}...'")
|
237 |
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None
|
238 |
|
239 |
+
# 5. Truncate text
|
240 |
if len(clean_text) > MAX_TTS_CHARS:
|
241 |
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
242 |
+
clean_text = clean_text[:MAX_TTS_CHARS]; last_punct = max(clean_text.rfind(p) for p in '.?!; ');
|
|
|
243 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
244 |
clean_text += "..."
|
245 |
|
246 |
+
# 6. Prepare for GPU execution
|
247 |
+
current_device = 'cuda' # Assume GPU attached by decorator
|
248 |
+
moved_voice_pack = None
|
249 |
gen_func = globals()['generate_tts_internal']
|
250 |
+
print(f"[TTS Generate] Preparing for generation on device '{current_device}'...")
|
251 |
|
|
|
|
|
252 |
try:
|
253 |
+
# 7. Move model and data to GPU
|
254 |
+
print(f" TTS model device before move: {tts_model.device if hasattr(tts_model, 'device') else 'N/A'}")
|
255 |
tts_model.to(current_device)
|
256 |
+
print(f" TTS model device after move: {tts_model.device}")
|
257 |
+
print(" Moving voice pack data to CUDA...")
|
258 |
+
if isinstance(voice_pack_data, dict): moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()}
|
259 |
+
elif isinstance(voice_pack_data, torch.Tensor): moved_voice_pack = voice_pack_data.to(current_device)
|
260 |
+
else: moved_voice_pack = voice_pack_data
|
261 |
+
print(" Voice pack data moved (or assumed not tensor).")
|
262 |
+
|
263 |
+
# 8. Call the internal TTS function
|
264 |
+
print(f"[TTS Generate] Calling Kokoro generate function (language code 'eng')...")
|
265 |
+
# --- Using language code 'eng' ---
|
266 |
+
audio_data, sr = gen_func(tts_model, clean_text, moved_voice_pack, 'eng')
|
267 |
+
print(f"[TTS Generate] Kokoro function returned. Type: {type(audio_data)}, Sample Rate: {sr}")
|
268 |
+
|
269 |
+
except Exception as kokoro_err:
|
270 |
+
print(f"[TTS Generate] **** ERROR during Kokoro generate call ****: {kokoro_err}")
|
271 |
+
print(traceback.format_exc()); return None
|
272 |
finally:
|
273 |
+
# Move model back to CPU
|
|
|
274 |
try:
|
275 |
print("[TTS Generate] Moving TTS model back to CPU...")
|
276 |
+
if tts_model is not None: tts_model.to('cpu')
|
277 |
+
except Exception as move_back_err: print(f"[TTS Generate] Warn: Could not move TTS model back to CPU: {move_back_err}")
|
278 |
+
|
279 |
+
# 9. Process output audio data
|
280 |
+
if audio_data is None: print("[TTS Generate] Kokoro function returned None."); return None
|
281 |
+
print(f"[TTS Generate] Processing audio output. Type: {type(audio_data)}")
|
282 |
+
if isinstance(audio_data, torch.Tensor):
|
283 |
+
print(f" Original Tensor shape: {audio_data.shape}, dtype: {audio_data.dtype}, device: {audio_data.device}"); audio_np = audio_data.detach().cpu().numpy()
|
284 |
+
elif isinstance(audio_data, np.ndarray):
|
285 |
+
print(f" Original Numpy shape: {audio_data.shape}, dtype: {audio_data.dtype}"); audio_np = audio_data
|
286 |
+
else: print("[TTS Generate] Error: Unexpected audio data type from Kokoro."); return None
|
287 |
audio_np = audio_np.flatten().astype(np.float32)
|
288 |
+
print(f"[TTS Generate] Final Numpy Array shape: {audio_np.shape}, dtype: {audio_np.dtype}, min: {np.min(audio_np):.2f}, max: {np.max(audio_np):.2f}")
|
289 |
+
if np.max(np.abs(audio_np)) < 1e-4: print("[TTS Generate] Warning: Generated audio appears silent.")
|
290 |
+
end_time = time.time(); print(f"[TTS Generate] Audio generated successfully in {end_time - start_time:.2f}s.")
|
291 |
+
actual_sr = sr if isinstance(sr, int) and sr > 0 else TTS_SAMPLE_RATE
|
292 |
+
print(f"[TTS Generate] Returning audio tuple with SR={actual_sr}.")
|
293 |
+
return (actual_sr, audio_np)
|
294 |
|
295 |
except Exception as e:
|
296 |
+
print(f"[TTS Generate] **** UNEXPECTED ERROR in generate_tts_speech ****: {str(e)}")
|
297 |
+
print(traceback.format_exc()); return None
|
|
|
298 |
|
|
|
299 |
def get_voice_id_from_display(voice_display_name: str) -> str:
|
300 |
+
"""Maps display name to voice ID."""
|
301 |
return VOICE_CHOICES.get(voice_display_name, 'af')
|
302 |
|
303 |
+
# --- Gradio Interaction Logic (Synchronous) ---
|
|
|
304 |
ChatHistoryType = List[Dict[str, Optional[str]]]
|
305 |
|
306 |
def handle_interaction(
|
307 |
query: str,
|
308 |
history: ChatHistoryType,
|
309 |
selected_voice_display_name: str
|
310 |
+
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]:
|
311 |
"""Synchronous function to handle user queries for ZeroGPU."""
|
312 |
+
print(f"\n--- Handling Query (Sync) ---"); query = query.strip()
|
|
|
313 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
314 |
+
if not query: print("Empty query."); return history, "*Please enter query.*", "<div class='no-sources'>Enter query.</div>", None, gr.Button(value="Search", interactive=True)
|
315 |
|
316 |
+
current_history: ChatHistoryType = history + [{"role": "user", "content": query}, {"role": "assistant", "content": "*Processing...*"}]
|
317 |
+
status_update = "*Processing... Please wait.*"; sources_html = "<div class='searching'><span>Searching...</span></div>"; audio_data = None
|
318 |
+
button_update = gr.Button(value="Processing...", interactive=False); final_answer = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
|
|
320 |
try:
|
321 |
+
print("[Handler] Web search..."); start_t = time.time()
|
322 |
+
web_results = get_web_results_sync(query); print(f"[Handler] Web search took {time.time()-start_t:.2f}s")
|
323 |
+
sources_html = format_sources_html(web_results)
|
324 |
+
|
325 |
+
print("[Handler] LLM generation..."); start_t = time.time()
|
|
|
|
|
|
|
|
|
326 |
llm_prompt = format_llm_prompt(query, web_results)
|
327 |
+
final_answer = generate_llm_answer(llm_prompt); print(f"[Handler] LLM generation took {time.time()-start_t:.2f}s")
|
328 |
+
status_update = final_answer
|
329 |
|
|
|
330 |
tts_status_message = ""
|
331 |
+
print(f"[Handler] TTS Check: Enabled={TTS_ENABLED}, Model?={tts_model is not None}")
|
332 |
+
if TTS_ENABLED and tts_model is not None and not final_answer.startswith("Error"):
|
333 |
+
print("[Handler] TTS generation..."); start_t = time.time()
|
|
|
334 |
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
335 |
+
audio_data = generate_tts_speech(final_answer, voice_id) # Call decorated function
|
336 |
+
print(f"[Handler] TTS generation took {time.time()-start_t:.2f}s")
|
337 |
+
print(f"[Handler] Received audio_data: type={type(audio_data)}, shape={(audio_data[1].shape if audio_data else 'N/A')}")
|
338 |
+
if audio_data is None: tts_status_message = "\n\n*(Audio generation failed)*"
|
339 |
+
elif not TTS_ENABLED or tts_model is None:
|
340 |
+
tts_status_message = "\n\n*(TTS unavailable)*" if not tts_setup_thread.is_alive() else "\n\n*(TTS initializing...)*"
|
341 |
+
else: tts_status_message = "\n\n*(Audio skipped due to answer error)*"
|
342 |
+
|
343 |
final_answer_with_status = final_answer + tts_status_message
|
344 |
status_update = final_answer_with_status
|
345 |
+
current_history[-1]["content"] = final_answer_with_status # Update final history item
|
346 |
|
347 |
+
button_update = gr.Button(value="Search", interactive=True)
|
348 |
print("--- Query Handling Complete (Sync) ---")
|
349 |
|
350 |
except Exception as e:
|
351 |
+
print(f"[Handler] Error: {e}"); print(traceback.format_exc())
|
352 |
+
error_message = f"*Error: {e}*"; current_history[-1]["content"] = error_message
|
353 |
+
status_update = error_message; sources_html = "<div class='error'>Request failed.</div>"; audio_data = None
|
354 |
+
button_update = gr.Button(value="Search", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
+
print(f"[Handler] Returning: hist_len={len(current_history)}, status_len={len(status_update)}, sources_len={len(sources_html)}, audio?={audio_data is not None}, button_interact={button_update.interactive}")
|
357 |
+
return current_history, status_update, sources_html, audio_data, button_update
|
358 |
|
359 |
# --- Gradio UI Definition ---
|
|
|
360 |
css = """
|
361 |
/* ... [Your existing refined CSS] ... */
|
362 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
|
|
375 |
.search-box button:hover { background: #1d4ed8 !important; }
|
376 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
377 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
378 |
+
.answer-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
|
379 |
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
380 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
381 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
382 |
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
|
383 |
.sources-container { margin-top: 0; }
|
384 |
+
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; }
|
385 |
.source-item:last-child { border-bottom: none; }
|
386 |
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
|
387 |
+
.source-content { flex: 1; min-width: 0;}
|
388 |
+
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
389 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
390 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
391 |
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
|
|
394 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
395 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
396 |
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
|
397 |
+
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; cursor: pointer;}
|
398 |
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
|
399 |
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
|
400 |
+
/* ... other markdown styles ... */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
402 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
403 |
+
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
404 |
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
|
405 |
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
|
406 |
.audio-player audio { width: 100% !important; }
|
|
|
410 |
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
|
411 |
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
|
412 |
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
|
413 |
+
/* Dark Mode Styles (optional) */
|
414 |
.dark .gradio-container { background-color: #111827 !important; }
|
415 |
+
/* ... other dark mode rules ... */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
"""
|
417 |
|
418 |
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
419 |
chat_history_state = gr.State([])
|
|
|
420 |
with gr.Column():
|
421 |
+
with gr.Column(elem_id="header"): gr.Markdown("# ๐ AI Search Assistant (ZeroGPU)\n### (UI blocks during processing)")
|
|
|
|
|
|
|
|
|
422 |
with gr.Column(elem_classes="search-container"):
|
423 |
with gr.Row(elem_classes="search-box"):
|
424 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
425 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
426 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
|
|
427 |
with gr.Row(elem_classes="results-container"):
|
428 |
with gr.Column(scale=3):
|
429 |
+
chatbot_display = gr.Chatbot(label="Conversation", bubble_full_width=True, height=500, elem_classes="chat-history", type="messages", show_label=False, avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png"))
|
430 |
+
answer_status_output = gr.Markdown(value="*Enter query to start.*", elem_classes="answer-box markdown-content") # Shows final text
|
|
|
|
|
|
|
|
|
|
|
431 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
|
|
432 |
with gr.Column(scale=2):
|
433 |
+
with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources"); sources_output_html = gr.HTML(value="<div class='no-sources'>Sources appear here.</div>")
|
434 |
+
with gr.Row(elem_classes="examples-container"): gr.Examples(examples=["Latest AI news", "Explain LLMs", "Flu symptoms/prevention", "Python vs JS", "Paris Agreement"], inputs=search_input, label="Try examples:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
event_inputs = [search_input, chat_history_state, voice_select]
|
436 |
+
event_outputs = [ chatbot_display, answer_status_output, sources_output_html, audio_player, search_btn ]
|
437 |
+
search_btn.click(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs)
|
438 |
+
search_input.submit(fn=handle_interaction, inputs=event_inputs, outputs=event_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
|
|
|
440 |
if __name__ == "__main__":
|
441 |
print("Starting Gradio application (Synchronous for ZeroGPU)...")
|
442 |
+
time.sleep(1) # Wait for TTS setup thread
|
443 |
+
demo.queue(max_size=20).launch(debug=True, share=True)
|
|
|
|
|
|
|
|
|
444 |
print("Gradio application stopped.")
|