sagar007's picture
Update app.py
6c1f2d1 verified
raw
history blame
6.68 kB
import gradio as gr
import spaces # Required for ZeroGPU
from transformers import pipeline
from duckduckgo_search import DDGS
from datetime import datetime
# Initialize a lightweight text generation model on CPU
generator = pipeline("text-generation", model="distilgpt2", device=-1) # -1 ensures CPU by default
# Web search function (CPU-based)
def get_web_results(query: str, max_results: int = 3) -> list:
"""Fetch web results synchronously for Zero GPU compatibility."""
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return [{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]} for r in results]
except Exception as e:
return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
# Format prompt for the AI model (CPU-based)
def format_prompt(query: str, web_results: list) -> str:
"""Create a concise prompt with web context."""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context = "\n".join([f"- {r['title']}: {r['snippet']}" for r in web_results])
return f"""Time: {current_time}
Query: {query}
Web Context:
{context}
Provide a concise answer in markdown format with citations [1], [2], etc."""
# GPU-decorated answer generation
@spaces.GPU(duration=120) # Allow up to 120 seconds of GPU time
def generate_answer(prompt: str) -> str:
"""Generate a concise research answer using GPU."""
# Use max_new_tokens instead of max_length to allow new token generation
response = generator(prompt, max_new_tokens=150, num_return_sequences=1, truncation=True)[0]["generated_text"]
answer_start = response.find("Provide a concise") + len("Provide a concise answer in markdown format with citations [1], [2], etc.")
return response[answer_start:].strip() if answer_start > -1 else "No detailed answer generated."
# Format sources for display (CPU-based)
def format_sources(web_results: list) -> str:
"""Create a simple HTML list of sources."""
if not web_results:
return "<div>No sources available</div>"
sources_html = "<div class='sources-list'>"
for i, res in enumerate(web_results, 1):
sources_html += f"""
<div class='source-item'>
<span class='source-number'>[{i}]</span>
<a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:100]}...
</div>
"""
sources_html += "</div>"
return sources_html
# Main processing function
def process_deep_research(query: str, history: list):
"""Handle the deep research process."""
if not history:
history = []
# Fetch web results (CPU)
web_results = get_web_results(query)
sources_html = format_sources(web_results)
# Generate answer (GPU via @spaces.GPU)
prompt = format_prompt(query, web_results)
answer = generate_answer(prompt)
# Convert history to messages format (role/content)
new_history = history + [{"role": "user", "content": query}, {"role": "assistant", "content": answer}]
return answer, sources_html, new_history
# Custom CSS for a cool, lightweight UI
css = """
body {
font-family: 'Arial', sans-serif;
background: #1a1a1a;
color: #ffffff;
}
.gradio-container {
max-width: 900px;
margin: 0 auto;
padding: 15px;
}
.header {
text-align: center;
padding: 15px;
background: linear-gradient(135deg, #2c3e50, #3498db);
border-radius: 8px;
margin-bottom: 15px;
}
.header h1 { font-size: 2em; margin: 0; color: #ffffff; }
.header p { color: #bdc3c7; font-size: 1em; }
.search-box {
background: #2c2c2c;
padding: 10px;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.search-box input {
background: #3a3a3a !important;
color: #ffffff !important;
border: none !important;
border-radius: 5px !important;
}
.search-box button {
background: #3498db !important;
border: none !important;
border-radius: 5px !important;
}
.results-container {
margin-top: 15px;
display: flex;
gap: 15px;
}
.answer-box {
flex: 2;
background: #2c2c2c;
padding: 15px;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.answer-box .markdown { color: #ecf0f1; line-height: 1.5; }
.sources-list {
flex: 1;
background: #2c2c2c;
padding: 10px;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.source-item { margin-bottom: 8px; }
.source-number { color: #3498db; font-weight: bold; margin-right: 5px; }
.source-item a { color: #3498db; text-decoration: none; }
.source-item a:hover { text-decoration: underline; }
.history-box {
margin-top: 15px;
background: #2c2c2c;
padding: 10px;
border-radius: 8px;
max-height: 250px;
overflow-y: auto;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
"""
# Gradio app setup with Blocks
with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
history_state = gr.State([])
# Header
with gr.Column(elem_classes="header"):
gr.Markdown("# Deep Research Engine")
gr.Markdown("Fast, in-depth answers powered by web insights (ZeroGPU).")
# Search input and button
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
search_btn = gr.Button("Research", variant="primary")
# Results layout
with gr.Row(elem_classes="results-container"):
with gr.Column():
answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
with gr.Column():
sources_output = gr.HTML(label="Sources", elem_classes="sources-list")
# Chat history (using messages format)
with gr.Row():
history_display = gr.Chatbot(label="History", elem_classes="history-box", type="messages")
# Event handling
def handle_search(query, history):
answer, sources, new_history = process_deep_research(query, history)
return answer, sources, new_history
search_btn.click(
fn=handle_search,
inputs=[search_input, history_state],
outputs=[answer_output, sources_output, history_display]
).then(
fn=lambda x: x,
inputs=[history_display],
outputs=[history_state]
)
search_input.submit(
fn=handle_search,
inputs=[search_input, history_state],
outputs=[answer_output, sources_output, history_display]
).then(
fn=lambda x: x,
inputs=[history_display],
outputs=[history_state]
)
# Launch the app
if __name__ == "__main__":
demo.launch()