Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,680 Bytes
cf40b67 ed0c3c5 60c475d cf40b67 835fc41 379919c ed0c3c5 b17a402 ed0c3c5 cf40b67 ed0c3c5 cf40b67 60c475d cf40b67 ed0c3c5 60c475d 835fc41 60c475d 835fc41 60c475d ed0c3c5 cf40b67 ed0c3c5 60c475d ed0c3c5 6c1f2d1 ed0c3c5 60c475d ed0c3c5 60c475d ed0c3c5 cf40b67 60c475d cf40b67 60c475d ed0c3c5 cf40b67 60c475d ed0c3c5 60c475d 379919c ed0c3c5 60c475d ed0c3c5 60c475d 379919c 6c1f2d1 379919c 60c475d ed0c3c5 cf40b67 60c475d cf40b67 ed0c3c5 60c475d ed0c3c5 cf40b67 60c475d cf40b67 ed0c3c5 60c475d ed0c3c5 cf40b67 ed0c3c5 cf40b67 60c475d ed0c3c5 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 ed0c3c5 60c475d ed0c3c5 cf40b67 60c475d ed0c3c5 cf40b67 ed0c3c5 60c475d ed0c3c5 60c475d ed0c3c5 60c475d ed0c3c5 cf40b67 ed0c3c5 835fc41 cf40b67 ed0c3c5 60c475d ed0c3c5 60c475d 379919c 60c475d 379919c 60c475d ed0c3c5 cf40b67 60c475d 379919c 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d cf40b67 60c475d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import spaces # Required for ZeroGPU
from transformers import pipeline
from duckduckgo_search import DDGS
from datetime import datetime
# Initialize a lightweight text generation model on CPU
generator = pipeline("text-generation", model="distilgpt2", device=-1) # -1 ensures CPU by default
# Web search function (CPU-based)
def get_web_results(query: str, max_results: int = 3) -> list:
"""Fetch web results synchronously for Zero GPU compatibility."""
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return [{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]} for r in results]
except Exception as e:
return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]
# Format prompt for the AI model (CPU-based)
def format_prompt(query: str, web_results: list) -> str:
"""Create a concise prompt with web context."""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context = "\n".join([f"- {r['title']}: {r['snippet']}" for r in web_results])
return f"""Time: {current_time}
Query: {query}
Web Context:
{context}
Provide a concise answer in markdown format with citations [1], [2], etc."""
# GPU-decorated answer generation
@spaces.GPU(duration=120) # Allow up to 120 seconds of GPU time
def generate_answer(prompt: str) -> str:
"""Generate a concise research answer using GPU."""
# Use max_new_tokens instead of max_length to allow new token generation
response = generator(prompt, max_new_tokens=150, num_return_sequences=1, truncation=True)[0]["generated_text"]
answer_start = response.find("Provide a concise") + len("Provide a concise answer in markdown format with citations [1], [2], etc.")
return response[answer_start:].strip() if answer_start > -1 else "No detailed answer generated."
# Format sources for display (CPU-based)
def format_sources(web_results: list) -> str:
"""Create a simple HTML list of sources."""
if not web_results:
return "<div>No sources available</div>"
sources_html = "<div class='sources-list'>"
for i, res in enumerate(web_results, 1):
sources_html += f"""
<div class='source-item'>
<span class='source-number'>[{i}]</span>
<a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:100]}...
</div>
"""
sources_html += "</div>"
return sources_html
# Main processing function
def process_deep_research(query: str, history: list):
"""Handle the deep research process."""
if not history:
history = []
# Fetch web results (CPU)
web_results = get_web_results(query)
sources_html = format_sources(web_results)
# Generate answer (GPU via @spaces.GPU)
prompt = format_prompt(query, web_results)
answer = generate_answer(prompt)
# Convert history to messages format (role/content)
new_history = history + [{"role": "user", "content": query}, {"role": "assistant", "content": answer}]
return answer, sources_html, new_history
# Custom CSS for a cool, lightweight UI
css = """
body {
font-family: 'Arial', sans-serif;
background: #1a1a1a;
color: #ffffff;
}
.gradio-container {
max-width: 900px;
margin: 0 auto;
padding: 15px;
}
.header {
text-align: center;
padding: 15px;
background: linear-gradient(135deg, #2c3e50, #3498db);
border-radius: 8px;
margin-bottom: 15px;
}
.header h1 { font-size: 2em; margin: 0; color: #ffffff; }
.header p { color: #bdc3c7; font-size: 1em; }
.search-box {
background: #2c2c2c;
padding: 10px;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.search-box input {
background: #3a3a3a !important;
color: #ffffff !important;
border: none !important;
border-radius: 5px !important;
}
.search-box button {
background: #3498db !important;
border: none !important;
border-radius: 5px !important;
}
.results-container {
margin-top: 15px;
display: flex;
gap: 15px;
}
.answer-box {
flex: 2;
background: #2c2c2c;
padding: 15px;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.answer-box .markdown { color: #ecf0f1; line-height: 1.5; }
.sources-list {
flex: 1;
background: #2c2c2c;
padding: 10px;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.source-item { margin-bottom: 8px; }
.source-number { color: #3498db; font-weight: bold; margin-right: 5px; }
.source-item a { color: #3498db; text-decoration: none; }
.source-item a:hover { text-decoration: underline; }
.history-box {
margin-top: 15px;
background: #2c2c2c;
padding: 10px;
border-radius: 8px;
max-height: 250px;
overflow-y: auto;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
"""
# Gradio app setup with Blocks
with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
history_state = gr.State([])
# Header
with gr.Column(elem_classes="header"):
gr.Markdown("# Deep Research Engine")
gr.Markdown("Fast, in-depth answers powered by web insights (ZeroGPU).")
# Search input and button
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
search_btn = gr.Button("Research", variant="primary")
# Results layout
with gr.Row(elem_classes="results-container"):
with gr.Column():
answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
with gr.Column():
sources_output = gr.HTML(label="Sources", elem_classes="sources-list")
# Chat history (using messages format)
with gr.Row():
history_display = gr.Chatbot(label="History", elem_classes="history-box", type="messages")
# Event handling
def handle_search(query, history):
answer, sources, new_history = process_deep_research(query, history)
return answer, sources, new_history
search_btn.click(
fn=handle_search,
inputs=[search_input, history_state],
outputs=[answer_output, sources_output, history_display]
).then(
fn=lambda x: x,
inputs=[history_display],
outputs=[history_state]
)
search_input.submit(
fn=handle_search,
inputs=[search_input, history_state],
outputs=[answer_output, sources_output, history_display]
).then(
fn=lambda x: x,
inputs=[history_display],
outputs=[history_state]
)
# Launch the app
if __name__ == "__main__":
demo.launch() |