File size: 6,680 Bytes
cf40b67
ed0c3c5
60c475d
cf40b67
 
835fc41
379919c
ed0c3c5
b17a402
ed0c3c5
 
 
cf40b67
 
ed0c3c5
 
cf40b67
60c475d
cf40b67
ed0c3c5
60c475d
 
835fc41
60c475d
 
835fc41
 
60c475d
ed0c3c5
cf40b67
ed0c3c5
 
60c475d
ed0c3c5
6c1f2d1
 
ed0c3c5
 
60c475d
ed0c3c5
60c475d
ed0c3c5
cf40b67
60c475d
 
cf40b67
 
 
60c475d
ed0c3c5
cf40b67
 
 
 
 
60c475d
ed0c3c5
 
60c475d
 
379919c
ed0c3c5
 
60c475d
 
ed0c3c5
60c475d
 
379919c
6c1f2d1
379919c
 
 
60c475d
ed0c3c5
cf40b67
60c475d
 
 
 
 
cf40b67
ed0c3c5
60c475d
ed0c3c5
cf40b67
60c475d
cf40b67
ed0c3c5
60c475d
ed0c3c5
 
cf40b67
ed0c3c5
 
cf40b67
60c475d
ed0c3c5
 
 
60c475d
 
 
 
 
 
cf40b67
 
60c475d
cf40b67
60c475d
cf40b67
 
ed0c3c5
60c475d
ed0c3c5
cf40b67
 
60c475d
 
ed0c3c5
 
 
cf40b67
ed0c3c5
60c475d
 
 
ed0c3c5
 
 
 
 
 
 
 
60c475d
ed0c3c5
60c475d
ed0c3c5
 
 
cf40b67
ed0c3c5
835fc41
cf40b67
 
ed0c3c5
 
60c475d
 
 
 
 
ed0c3c5
60c475d
 
 
 
 
 
 
 
 
 
 
 
 
379919c
60c475d
379919c
60c475d
 
ed0c3c5
 
 
cf40b67
 
60c475d
 
379919c
60c475d
 
 
 
cf40b67
60c475d
cf40b67
60c475d
 
 
 
 
 
 
cf40b67
 
60c475d
cf40b67
60c475d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import spaces  # Required for ZeroGPU
from transformers import pipeline
from duckduckgo_search import DDGS
from datetime import datetime

# Initialize a lightweight text generation model on CPU
generator = pipeline("text-generation", model="distilgpt2", device=-1)  # -1 ensures CPU by default

# Web search function (CPU-based)
def get_web_results(query: str, max_results: int = 3) -> list:
    """Fetch web results synchronously for Zero GPU compatibility."""
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results))
            return [{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]} for r in results]
    except Exception as e:
        return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]

# Format prompt for the AI model (CPU-based)
def format_prompt(query: str, web_results: list) -> str:
    """Create a concise prompt with web context."""
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    context = "\n".join([f"- {r['title']}: {r['snippet']}" for r in web_results])
    return f"""Time: {current_time}
Query: {query}
Web Context:
{context}
Provide a concise answer in markdown format with citations [1], [2], etc."""

# GPU-decorated answer generation
@spaces.GPU(duration=120)  # Allow up to 120 seconds of GPU time
def generate_answer(prompt: str) -> str:
    """Generate a concise research answer using GPU."""
    # Use max_new_tokens instead of max_length to allow new token generation
    response = generator(prompt, max_new_tokens=150, num_return_sequences=1, truncation=True)[0]["generated_text"]
    answer_start = response.find("Provide a concise") + len("Provide a concise answer in markdown format with citations [1], [2], etc.")
    return response[answer_start:].strip() if answer_start > -1 else "No detailed answer generated."

# Format sources for display (CPU-based)
def format_sources(web_results: list) -> str:
    """Create a simple HTML list of sources."""
    if not web_results:
        return "<div>No sources available</div>"
    sources_html = "<div class='sources-list'>"
    for i, res in enumerate(web_results, 1):
        sources_html += f"""
        <div class='source-item'>
            <span class='source-number'>[{i}]</span>
            <a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:100]}...
        </div>
        """
    sources_html += "</div>"
    return sources_html

# Main processing function
def process_deep_research(query: str, history: list):
    """Handle the deep research process."""
    if not history:
        history = []
    
    # Fetch web results (CPU)
    web_results = get_web_results(query)
    sources_html = format_sources(web_results)

    # Generate answer (GPU via @spaces.GPU)
    prompt = format_prompt(query, web_results)
    answer = generate_answer(prompt)
    
    # Convert history to messages format (role/content)
    new_history = history + [{"role": "user", "content": query}, {"role": "assistant", "content": answer}]
    
    return answer, sources_html, new_history

# Custom CSS for a cool, lightweight UI
css = """
body {
    font-family: 'Arial', sans-serif;
    background: #1a1a1a;
    color: #ffffff;
}
.gradio-container {
    max-width: 900px;
    margin: 0 auto;
    padding: 15px;
}
.header {
    text-align: center;
    padding: 15px;
    background: linear-gradient(135deg, #2c3e50, #3498db);
    border-radius: 8px;
    margin-bottom: 15px;
}
.header h1 { font-size: 2em; margin: 0; color: #ffffff; }
.header p { color: #bdc3c7; font-size: 1em; }
.search-box {
    background: #2c2c2c;
    padding: 10px;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.search-box input {
    background: #3a3a3a !important;
    color: #ffffff !important;
    border: none !important;
    border-radius: 5px !important;
}
.search-box button {
    background: #3498db !important;
    border: none !important;
    border-radius: 5px !important;
}
.results-container {
    margin-top: 15px;
    display: flex;
    gap: 15px;
}
.answer-box {
    flex: 2;
    background: #2c2c2c;
    padding: 15px;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.answer-box .markdown { color: #ecf0f1; line-height: 1.5; }
.sources-list {
    flex: 1;
    background: #2c2c2c;
    padding: 10px;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.source-item { margin-bottom: 8px; }
.source-number { color: #3498db; font-weight: bold; margin-right: 5px; }
.source-item a { color: #3498db; text-decoration: none; }
.source-item a:hover { text-decoration: underline; }
.history-box {
    margin-top: 15px;
    background: #2c2c2c;
    padding: 10px;
    border-radius: 8px;
    max-height: 250px;
    overflow-y: auto;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
"""

# Gradio app setup with Blocks
with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
    history_state = gr.State([])

    # Header
    with gr.Column(elem_classes="header"):
        gr.Markdown("# Deep Research Engine")
        gr.Markdown("Fast, in-depth answers powered by web insights (ZeroGPU).")

    # Search input and button
    with gr.Row(elem_classes="search-box"):
        search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
        search_btn = gr.Button("Research", variant="primary")

    # Results layout
    with gr.Row(elem_classes="results-container"):
        with gr.Column():
            answer_output = gr.Markdown(label="Research Findings", elem_classes="answer-box")
        with gr.Column():
            sources_output = gr.HTML(label="Sources", elem_classes="sources-list")

    # Chat history (using messages format)
    with gr.Row():
        history_display = gr.Chatbot(label="History", elem_classes="history-box", type="messages")

    # Event handling
    def handle_search(query, history):
        answer, sources, new_history = process_deep_research(query, history)
        return answer, sources, new_history

    search_btn.click(
        fn=handle_search,
        inputs=[search_input, history_state],
        outputs=[answer_output, sources_output, history_display]
    ).then(
        fn=lambda x: x,
        inputs=[history_display],
        outputs=[history_state]
    )

    search_input.submit(
        fn=handle_search,
        inputs=[search_input, history_state],
        outputs=[answer_output, sources_output, history_display]
    ).then(
        fn=lambda x: x,
        inputs=[history_display],
        outputs=[history_state]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()