File size: 6,523 Bytes
cf40b67
ed0c3c5
d64ad42
cf40b67
 
d64ad42
835fc41
379919c
d64ad42
b17a402
ed0c3c5
d64ad42
 
cf40b67
 
ed0c3c5
d64ad42
cf40b67
60c475d
cf40b67
d64ad42
 
60c475d
d64ad42
 
 
 
 
 
 
 
835fc41
d64ad42
60c475d
d64ad42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf40b67
d64ad42
60c475d
d64ad42
 
60c475d
d64ad42
cf40b67
d64ad42
60c475d
cf40b67
 
d64ad42
60c475d
d64ad42
cf40b67
 
 
 
 
d64ad42
ed0c3c5
d64ad42
 
ed0c3c5
 
60c475d
d64ad42
60c475d
d64ad42
 
 
 
 
 
 
379919c
60c475d
d64ad42
 
 
cf40b67
60c475d
 
 
 
 
cf40b67
d64ad42
60c475d
d64ad42
cf40b67
60c475d
cf40b67
d64ad42
60c475d
d64ad42
 
cf40b67
d64ad42
 
cf40b67
60c475d
d64ad42
 
 
60c475d
 
d64ad42
60c475d
 
d64ad42
cf40b67
 
60c475d
cf40b67
d64ad42
cf40b67
 
d64ad42
60c475d
d64ad42
 
cf40b67
 
d64ad42
60c475d
d64ad42
 
 
12a0d68
d64ad42
60c475d
d64ad42
60c475d
ed0c3c5
 
d64ad42
ed0c3c5
d64ad42
 
 
 
60c475d
d64ad42
60c475d
d64ad42
 
 
835fc41
d64ad42
cf40b67
 
ed0c3c5
 
60c475d
 
 
d64ad42
60c475d
 
 
d64ad42
60c475d
 
d64ad42
 
60c475d
 
d64ad42
 
 
 
cf40b67
 
60c475d
d64ad42
 
cf40b67
 
60c475d
d64ad42
 
cf40b67
 
d64ad42
60c475d
cf40b67
60c475d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gradio as gr
import spaces  # Required for ZeroGPU
from transformers import pipeline
from duckduckgo_search import DDGS
from datetime import datetime
import re  # Added for regular expressions

# Initialize a lightweight text generation model on CPU
generator = pipeline("text-generation", model="distilgpt2", device=-1)  # -1 ensures CPU

# Web search function (CPU-based)
def get_web_results(query: str, max_results: int = 3) -> list:
    """Fetch web results synchronously for Zero GPU compatibility."""
    try:
        with DDGS() as ddgs:
            results = list(ddgs.text(query, max_results=max_results))
            return [{"title": r.get("title", "No Title"), "snippet": r["body"], "url": r["href"]} for r in results]
    except Exception as e:
        return [{"title": "Error", "snippet": f"Failed to fetch results: {str(e)}", "url": "#"}]


# Format prompt for the AI model (CPU-based) - IMPROVED
def format_prompt(query: str, web_results: list) -> str:
    """Create a concise prompt with web context, explicitly instructing citation."""
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    context = ""
    for i, r in enumerate(web_results, 1):  # Start index at 1 for citations
        context += f"- [{i}] {r['title']}: {r['snippet']}\n"

    return f"""
Time: {current_time}
Query: {query}
Web Context:
{context}
Provide a concise answer in markdown format.  Cite relevant sources using the bracketed numbers provided (e.g., [1], [2]).  Focus on direct answers.  If the context doesn't contain the answer, say that the information wasn't found in the provided sources.
    """.strip()


# GPU-decorated answer generation - IMPROVED
@spaces.GPU(duration=120)  # Allow up to 120 seconds of GPU time
def generate_answer(prompt: str, web_results: list) -> str:
    """Generate and post-process the research answer."""
    response = generator(prompt, max_new_tokens=150, num_return_sequences=1, truncation=True, return_full_text=False)[0]["generated_text"]

    # Basic post-processing (can be expanded):
    response = response.strip()

    # Replace citation placeholders *if* they exist in the web_results.
    for i in range(1, len(web_results) + 1):
      response = response.replace(f"[{i}]", f"[^{i}^](#{i})")  #Markdown link to source

    return response


# Format sources for display (CPU-based) - IMPROVED
def format_sources(web_results: list) -> str:
    """Create an HTML list of sources with anchors."""
    if not web_results:
        return "<div>No sources available</div>"
    sources_html = "<div class='sources-list'>"
    for i, res in enumerate(web_results, 1):
        sources_html += f"""
        <div class='source-item' id='{i}'>
            <span class='source-number'>[{i}]</span>
            <a href='{res['url']}' target='_blank'>{res['title']}</a>: {res['snippet'][:100]}...
        </div>
        """
    sources_html += "</div>"
    return sources_html

# Main processing function - IMPROVED
def process_deep_research(query: str, history: list):
    """Handle the deep research process, including history updates."""

    # Fetch web results (CPU)
    web_results = get_web_results(query)

    # Generate answer (GPU)
    prompt = format_prompt(query, web_results)
    answer = generate_answer(prompt, web_results)

    sources_html = format_sources(web_results)

    # Update history (using the Gradio Chatbot's expected format)
    new_history = history + [[query, answer + "\n\n" + sources_html]]

    return answer, sources_html, new_history



# Custom CSS -  Slightly adjusted for better spacing
css = """
body {
    font-family: 'Arial', sans-serif;
    background: #1a1a1a;
    color: #ffffff;
}
.gradio-container {
    max-width: 900px;
    margin: 0 auto;
    padding: 15px;
}
.header {
    text-align: center;
    padding: 15px;
    background: linear-gradient(135deg, #2c3e50, #3498db);
    border-radius: 8px;
    margin-bottom: 15px;
}
.header h1 { font-size: 2em; margin: 0; color: #ffffff; }
.header p { color: #bdc3c7; font-size: 1em; }
.search-box {
    background: #2c2c2c;
    padding: 10px;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.search-box input {
    background: #3a3a3a !important;
    color: #ffffff !important;
    border: none !important;
    border-radius: 5px !important;
}
.search-box button {
    background: #3498db !important;
    border: none !important;
    border-radius: 5px !important;
}
.results-container {
    margin-top: 15px;
    display: flex;
    flex-direction: column; /* Stack answer and sources vertically */
    gap: 15px;
}
.answer-box {
    /* flex: 2; Removed flex property */
    background: #2c2c2c;
    padding: 15px;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.answer-box .markdown { color: #ecf0f1; line-height: 1.5; }
.sources-list {
    /* flex: 1;  Removed flex property */
    background: #2c2c2c;
    padding: 10px;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}
.source-item { margin-bottom: 8px; }
.source-number { color: #3498db; font-weight: bold; margin-right: 5px; }
.source-item a { color: #3498db; text-decoration: none; }
.source-item a:hover { text-decoration: underline; }
.history-box {
    margin-top: 15px;
    background: #2c2c2c;
    padding: 10px;
    border-radius: 8px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.2);
}

"""

# Gradio app setup with Blocks
with gr.Blocks(title="Deep Research Engine - ZeroGPU", css=css) as demo:
    # Header
    with gr.Column(elem_classes="header"):
        gr.Markdown("# Deep Research Engine")
        gr.Markdown("Fast, in-depth answers powered by web insights (ZeroGPU).")

    # Search input and button
    with gr.Row(elem_classes="search-box"):
        search_input = gr.Textbox(label="", placeholder="Ask anything...", lines=2)
        search_btn = gr.Button("Research", variant="primary")

    # Results layout -  Now using a single Chatbot component
    history = gr.Chatbot(elem_classes="history-box", label="Research Results & History")


    # Event handling - Simplified
    def handle_search(query, history_data):
        answer, sources, new_history = process_deep_research(query, history_data)
        return new_history

    search_btn.click(
        fn=handle_search,
        inputs=[search_input, history],
        outputs=[history]
    )
    search_input.submit(
        fn=handle_search,
        inputs=[search_input, history],
        outputs=[history]
    )


# Launch the app
if __name__ == "__main__":
    demo.launch()