Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,617 Bytes
cf40b67 a6e4f9f cf40b67 a6e4f9f cf40b67 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 d64ad42 b8c63a2 a6e4f9f b8c63a2 60c475d b8c63a2 a6e4f9f b8c63a2 a6e4f9f d64ad42 a6e4f9f cf40b67 a6e4f9f cf40b67 a6e4f9f b8c63a2 cf40b67 a6e4f9f b8c63a2 a6e4f9f cf40b67 b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f d64ad42 a6e4f9f b8c63a2 a6e4f9f 60c475d a6e4f9f b8c63a2 a6e4f9f d64ad42 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f d64ad42 b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f d64ad42 b8c63a2 a6e4f9f d64ad42 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 cf40b67 a6e4f9f cf40b67 a6e4f9f cf40b67 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 cf40b67 a6e4f9f b8c63a2 a6e4f9f b8c63a2 60c475d a6e4f9f b8c63a2 a6e4f9f cf40b67 a6e4f9f cf40b67 b8c63a2 cf40b67 a6e4f9f b8c63a2 cf40b67 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 12a0d68 a6e4f9f ed0c3c5 a6e4f9f b8c63a2 a6e4f9f d64ad42 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 835fc41 cf40b67 b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f b8c63a2 a6e4f9f cf40b67 b8c63a2 a6e4f9f cf40b67 a6e4f9f b8c63a2 a6e4f9f cf40b67 a6e4f9f cf40b67 a6e4f9f b8c63a2 a6e4f9f cf40b67 b8c63a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
from typing import List, Dict, Tuple, Any
from functools import lru_cache
import asyncio
import threading
from concurrent.futures import ThreadPoolExecutor
# --- Configuration ---
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
MAX_SEARCH_RESULTS = 5
TTS_SAMPLE_RATE = 24000
MAX_TTS_CHARS = 1000
GPU_DURATION = 30 # for spaces.GPU decorator
MAX_NEW_TOKENS = 256
TEMPERATURE = 0.7
TOP_P = 0.95
# --- Initialization ---
# Initialize model and tokenizer with better error handling
try:
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
offload_folder="offload",
low_cpu_mem_usage=True,
torch_dtype=torch.float16
)
print("Model and tokenizer loaded successfully")
except Exception as e:
print(f"Error initializing model: {str(e)}")
raise
# --- TTS Setup ---
VOICE_CHOICES = {
'๐บ๐ธ Female (Default)': 'af',
'๐บ๐ธ Bella': 'af_bella',
'๐บ๐ธ Sarah': 'af_sarah',
'๐บ๐ธ Nicole': 'af_nicole'
}
TTS_ENABLED = False
TTS_MODEL = None
VOICEPACKS = {} # Cache voice packs
# Initialize Kokoro TTS in a separate thread to avoid blocking startup
def setup_tts():
global TTS_ENABLED, TTS_MODEL, VOICEPACKS
try:
# Install dependencies first
subprocess.run(['git', 'lfs', 'install'], check=True)
if not os.path.exists('Kokoro-82M'):
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
# Install espeak
try:
subprocess.run(['apt-get', 'update'], check=True)
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
except subprocess.CalledProcessError:
try:
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
except subprocess.CalledProcessError:
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
# Set up Kokoro TTS
if os.path.exists('Kokoro-82M'):
import sys
sys.path.append('Kokoro-82M')
from models import build_model
from kokoro import generate
# Make these functions accessible globally
globals()['build_model'] = build_model
globals()['generate_tts'] = generate
device = 'cuda' if torch.cuda.is_available() else 'cpu'
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
# Preload default voice
default_voice = 'af'
VOICEPACKS[default_voice] = torch.load(f'Kokoro-82M/voices/{default_voice}.pt',
map_location=device,
weights_only=True)
# Preload other common voices to reduce latency
for voice_name in ['af_bella', 'af_sarah', 'af_nicole']:
try:
voice_path = f'Kokoro-82M/voices/{voice_name}.pt'
if os.path.exists(voice_path):
VOICEPACKS[voice_name] = torch.load(voice_path,
map_location=device,
weights_only=True)
except Exception as e:
print(f"Warning: Could not preload voice {voice_name}: {str(e)}")
TTS_ENABLED = True
print("TTS setup completed successfully")
else:
print("Warning: Kokoro-82M directory not found. TTS disabled.")
except Exception as e:
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
TTS_ENABLED = False
# Start TTS setup in a separate thread
threading.Thread(target=setup_tts, daemon=True).start()
# --- Search and Generation Functions ---
@lru_cache(maxsize=128)
def get_web_results(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, str]]:
"""Get web search results using DuckDuckGo with caching for improved performance"""
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return [{
"title": result.get("title", ""),
"snippet": result.get("body", ""),
"url": result.get("href", ""),
"date": result.get("published", "")
} for result in results]
except Exception as e:
print(f"Error in web search: {e}")
return []
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
"""Format the prompt with web context"""
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
Current Time: {current_time}
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
Query: {query}
Web Context:
{context_lines}
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
Answer:"""
def format_sources(web_results: List[Dict[str, str]]) -> str:
"""Format sources with more details"""
if not web_results:
return "<div class='no-sources'>No sources available</div>"
sources_html = "<div class='sources-container'>"
for i, res in enumerate(web_results, 1):
title = res["title"] or "Source"
date = f"<span class='source-date'>{res['date']}</span>" if res.get('date') else ""
snippet = res.get("snippet", "")[:150] + "..." if res.get("snippet") else ""
sources_html += f"""
<div class='source-item'>
<div class='source-number'>[{i}]</div>
<div class='source-content'>
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
{date}
<div class='source-snippet'>{snippet}</div>
</div>
</div>
"""
sources_html += "</div>"
return sources_html
@spaces.GPU(duration=GPU_DURATION)
def generate_answer(prompt: str) -> str:
"""Generate answer using the DeepSeek model with optimized settings"""
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
return_attention_mask=True
).to(model.device)
with torch.no_grad(): # Disable gradient calculation for inference
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE,
top_p=TOP_P,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
@spaces.GPU(duration=GPU_DURATION)
def generate_speech(text: str, voice_name: str = 'af') -> Tuple[int, np.ndarray] | None:
"""Generate speech from text using Kokoro TTS model with improved error handling and caching."""
global VOICEPACKS, TTS_MODEL, TTS_ENABLED
if not TTS_ENABLED or TTS_MODEL is None:
return None
try:
from kokoro import generate as generate_tts
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load voicepack if needed
if voice_name not in VOICEPACKS:
voice_file = f'Kokoro-82M/voices/{voice_name}.pt'
if not os.path.exists(voice_file):
print(f"Voicepack {voice_name}.pt not found. Falling back to default 'af'.")
voice_name = 'af'
# Check if default is already loaded
if voice_name not in VOICEPACKS:
voice_file = f'Kokoro-82M/voices/{voice_name}.pt'
if os.path.exists(voice_file):
VOICEPACKS[voice_name] = torch.load(voice_file, map_location=device, weights_only=True)
else:
print("Default voicepack 'af.pt' not found. Cannot generate audio.")
return None
else:
VOICEPACKS[voice_name] = torch.load(voice_file, map_location=device, weights_only=True)
# Clean the text
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
# Split long text into chunks
max_chars = MAX_TTS_CHARS
chunks = []
if len(clean_text) > max_chars:
sentences = clean_text.split('.')
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) + 1 < max_chars:
current_chunk += sentence + "."
else:
chunks.append(current_chunk.strip())
current_chunk = sentence + "."
if current_chunk:
chunks.append(current_chunk.strip())
else:
chunks = [clean_text]
# Generate audio for each chunk
audio_chunks = []
for chunk in chunks:
if chunk.strip():
chunk_audio, _ = generate_tts(TTS_MODEL, chunk, VOICEPACKS[voice_name], lang='a')
if isinstance(chunk_audio, torch.Tensor):
chunk_audio = chunk_audio.cpu().numpy()
audio_chunks.append(chunk_audio)
# Concatenate chunks
if audio_chunks:
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
return (TTS_SAMPLE_RATE, final_audio)
return None
except Exception as e:
print(f"Error generating speech: {str(e)}")
return None
# --- Asynchronous Processing ---
async def async_web_search(query: str) -> List[Dict[str, str]]:
"""Run web search in a non-blocking way"""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, get_web_results, query)
async def async_answer_generation(prompt: str) -> str:
"""Run answer generation in a non-blocking way"""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, generate_answer, prompt)
async def async_speech_generation(text: str, voice_name: str) -> Tuple[int, np.ndarray] | None:
"""Run speech generation in a non-blocking way"""
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, generate_speech, text, voice_name)
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
"""Process user query with streaming effect and non-blocking operations"""
try:
if history is None:
history = []
# Start the search task
current_history = history + [[query, "*Searching...*"]]
# Yield initial searching state
yield (
"*Searching & Thinking...*", # answer_output (Markdown)
"<div class='searching'>Searching for results...</div>", # sources_output (HTML)
"Searching...", # search_btn (Button)
current_history, # chat_history_display (Chatbot)
None # audio_output (Audio)
)
# Get web results
web_results = get_web_results(query)
sources_html = format_sources(web_results)
# Update with the search results obtained
yield (
"*Analyzing search results...*", # answer_output
sources_html, # sources_output
"Generating answer...", # search_btn
current_history, # chat_history_display
None # audio_output
)
# Generate answer
prompt = format_prompt(query, web_results)
answer = generate_answer(prompt)
final_answer = answer.split("Answer:")[-1].strip()
# Update history before TTS
updated_history = history + [[query, final_answer]]
# Update with the answer before generating speech
yield (
final_answer, # answer_output
sources_html, # sources_output
"Generating audio...", # search_btn
updated_history, # chat_history_display
None # audio_output
)
# Generate speech (but don't block if TTS is still initializing)
audio = None
if TTS_ENABLED and TTS_MODEL is not None:
try:
audio = generate_speech(final_answer, selected_voice)
if audio is None:
final_answer += "\n\n*Audio generation failed. The voicepack may be missing or incompatible.*"
except Exception as e:
final_answer += f"\n\n*Error generating audio: {str(e)}*"
else:
final_answer += "\n\n*TTS is still initializing or is disabled. Try again in a moment.*"
# Yield final result
yield (
final_answer, # answer_output
sources_html, # sources_output
"Search", # search_btn
updated_history, # chat_history_display
audio # audio_output
)
except Exception as e:
error_message = str(e)
if "GPU quota" in error_message:
error_message = "โ ๏ธ GPU quota exceeded. Please try again later when the daily quota resets."
yield (
f"Error: {error_message}", # answer_output
"<div class='error'>An error occurred during search</div>", # sources_output
"Search", # search_btn
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
None # audio_output
)
# --- Improved UI ---
css = """
.gradio-container {
max-width: 1200px !important;
background-color: #f7f7f8 !important;
}
#header {
text-align: center;
margin-bottom: 2rem;
padding: 2rem 0;
background: linear-gradient(135deg, #1a1b1e, #2d2e32);
border-radius: 12px;
color: white;
box-shadow: 0 8px 32px rgba(0,0,0,0.2);
}
#header h1 {
color: white;
font-size: 2.5rem;
margin-bottom: 0.5rem;
text-shadow: 0 2px 4px rgba(0,0,0,0.3);
}
#header h3 {
color: #a8a9ab;
}
.search-container {
background: linear-gradient(135deg, #1a1b1e, #2d2e32);
border-radius: 12px;
box-shadow: 0 4px 16px rgba(0,0,0,0.15);
padding: 1.5rem;
margin-bottom: 1.5rem;
}
.search-box {
padding: 1rem;
background: #2c2d30;
border-radius: 10px;
margin-bottom: 1rem;
box-shadow: inset 0 2px 4px rgba(0,0,0,0.1);
}
.search-box input[type="text"] {
background: #3a3b3e !important;
border: 1px solid #4a4b4e !important;
color: white !important;
border-radius: 8px !important;
transition: all 0.3s ease;
}
.search-box input[type="text"]:focus {
border-color: #60a5fa !important;
box-shadow: 0 0 0 2px rgba(96, 165, 250, 0.3) !important;
}
.search-box input[type="text"]::placeholder {
color: #a8a9ab !important;
}
.search-box button {
background: #2563eb !important;
border: none !important;
box-shadow: 0 2px 4px rgba(0,0,0,0.2) !important;
transition: all 0.3s ease !important;
}
.search-box button:hover {
background: #1d4ed8 !important;
transform: translateY(-1px) !important;
}
.search-box button:active {
transform: translateY(1px) !important;
}
.results-container {
background: #2c2d30;
border-radius: 10px;
padding: 1.5rem;
margin-top: 1.5rem;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
.answer-box {
background: #3a3b3e;
border-radius: 10px;
padding: 1.5rem;
color: white;
margin-bottom: 1.5rem;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
transition: all 0.3s ease;
}
.answer-box:hover {
box-shadow: 0 4px 16px rgba(0,0,0,0.2);
}
.answer-box p {
color: #e5e7eb;
line-height: 1.7;
}
.answer-box code {
background: #2c2d30;
border-radius: 4px;
padding: 2px 4px;
}
.sources-container {
margin-top: 1rem;
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
}
.source-item {
display: flex;
padding: 12px;
margin: 12px 0;
background: #3a3b3e;
border-radius: 8px;
transition: all 0.2s;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.source-item:hover {
background: #4a4b4e;
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0,0,0,0.15);
}
.source-number {
font-weight: bold;
margin-right: 12px;
color: #60a5fa;
}
.source-content {
flex: 1;
}
.source-title {
color: #60a5fa;
font-weight: 500;
text-decoration: none;
display: block;
margin-bottom: 6px;
transition: all 0.2s;
}
.source-title:hover {
color: #93c5fd;
text-decoration: underline;
}
.source-date {
color: #a8a9ab;
font-size: 0.9em;
margin-left: 8px;
}
.source-snippet {
color: #e5e7eb;
font-size: 0.9em;
line-height: 1.5;
}
.chat-history {
max-height: 400px;
overflow-y: auto;
padding: 1rem;
background: #2c2d30;
border-radius: 8px;
margin-top: 1rem;
scrollbar-width: thin;
scrollbar-color: #4a4b4e #2c2d30;
}
.chat-history::-webkit-scrollbar {
width: 8px;
}
.chat-history::-webkit-scrollbar-track {
background: #2c2d30;
}
.chat-history::-webkit-scrollbar-thumb {
background-color: #4a4b4e;
border-radius: 20px;
}
.examples-container {
background: #2c2d30;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
}
.examples-container button {
background: #3a3b3e !important;
border: 1px solid #4a4b4e !important;
color: #e5e7eb !important;
transition: all 0.2s;
margin: 4px !important;
}
.examples-container button:hover {
background: #4a4b4e !important;
transform: translateY(-1px);
}
.markdown-content {
color: #e5e7eb !important;
}
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
color: white !important;
margin-top: 1.2em !important;
margin-bottom: 0.8em !important;
}
.markdown-content h1 {
font-size: 1.7em !important;
}
.markdown-content h2 {
font-size: 1.5em !important;
}
.markdown-content h3 {
font-size: 1.3em !important;
}
.markdown-content a {
color: #60a5fa !important;
text-decoration: none !important;
transition: all 0.2s;
}
.markdown-content a:hover {
color: #93c5fd !important;
text-decoration: underline !important;
}
.markdown-content code {
background: #2c2d30 !important;
padding: 2px 6px !important;
border-radius: 4px !important;
font-family: monospace !important;
}
.markdown-content pre {
background: #2c2d30 !important;
padding: 12px !important;
border-radius: 8px !important;
overflow-x: auto !important;
}
.markdown-content blockquote {
border-left: 4px solid #60a5fa !important;
padding-left: 1em !important;
margin-left: 0 !important;
color: #a8a9ab !important;
}
.markdown-content table {
border-collapse: collapse !important;
width: 100% !important;
}
.markdown-content th, .markdown-content td {
padding: 8px 12px !important;
border: 1px solid #4a4b4e !important;
}
.markdown-content th {
background: #2c2d30 !important;
}
.accordion {
background: #2c2d30 !important;
border-radius: 8px !important;
margin-top: 1rem !important;
box-shadow: 0 2px 8px rgba(0,0,0,0.1) !important;
}
.voice-selector {
margin-top: 1rem;
background: #2c2d30;
border-radius: 8px;
padding: 0.5rem;
}
.voice-selector select {
background: #3a3b3e !important;
color: white !important;
border: 1px solid #4a4b4e !important;
border-radius: 4px !important;
padding: 8px !important;
transition: all 0.2s;
}
.voice-selector select:focus {
border-color: #60a5fa !important;
}
.audio-player {
margin-top: 1rem;
background: #2c2d30 !important;
border-radius: 8px !important;
padding: 0.5rem !important;
}
.audio-player audio {
width: 100% !important;
}
.searching, .error {
padding: 1rem;
border-radius: 8px;
text-align: center;
margin: 1rem 0;
}
.searching {
background: rgba(96, 165, 250, 0.1);
color: #60a5fa;
}
.error {
background: rgba(239, 68, 68, 0.1);
color: #ef4444;
}
.no-sources {
padding: 1rem;
text-align: center;
color: #a8a9ab;
background: #2c2d30;
border-radius: 8px;
}
@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1; }
100% { opacity: 0.6; }
}
.searching {
animation: pulse 1.5s infinite;
}
"""
# --- Gradio Interface ---
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
chat_history = gr.State([])
with gr.Column(elem_id="header"):
gr.Markdown("# ๐ AI Search Assistant")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(
label="",
placeholder="Ask anything...",
scale=5,
container=False
)
voice_select = gr.Dropdown(
choices=list(VOICE_CHOICES.keys()),
value=list(VOICE_CHOICES.keys())[0],
label="Voice",
elem_classes="voice-selector",
scale=1
)
search_btn = gr.Button("Search", variant="primary", scale=1)
with gr.Row(elem_classes="results-container"):
with gr.Column(scale=2):
with gr.Column(elem_classes="answer-box"):
answer_output = gr.Markdown(elem_classes="markdown-content")
with gr.Row():
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player")
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
chat_history_display = gr.Chatbot(elem_classes="chat-history")
with gr.Column(scale=1):
with gr.Column(elem_classes="sources-box"):
gr.Markdown("### Sources")
sources_output = gr.HTML()
with gr.Row(elem_classes="examples-container"):
gr.Examples(
examples=[
"Latest news about artificial intelligence advances",
"How does blockchain technology work?",
"What are the best practices for sustainable living?",
"Compare electric vehicles and traditional cars"
],
inputs=search_input,
label="Try these examples"
)
# Handle voice selection mapping
def get_voice_id(voice_name):
return VOICE_CHOICES.get(voice_name, 'af')
# Handle interactions
search_btn.click(
fn=process_query,
inputs=[search_input, chat_history, lambda x: get_voice_id(x), voice_select],
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
# Also trigger search on Enter key
search_input.submit(
fn=process_query,
inputs=[search_input, chat_history, lambda x: get_voice_id(x), voice_select],
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
)
if __name__ == "__main__":
# Start the app with optimized settings
demo.queue(concurrency_count=5, max_size=20).launch(share=True) |