File size: 5,382 Bytes
22fca73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from statsmodels.tsa.holtwinters import ExponentialSmoothing
from model import PredictionModel

data_path = './data/data_daily.csv'
damped_model_path = './models/damped_hw_model.pkl'
model_path = './models/hw_model.pkl'

months = {1: [31, "2022-01-31"], 2: [59, "2022-02-28"], 3: [90, "2022-03-31"], 4: [120, "2022-04-30"], 5: [151, "2022-05-31"], 6: [181, "2022-06-30"], 7: [212, "2022-07-31"], 8: [243, "2022-08-31"], 9: [273, "2022-09-30"], 10: [304, "2022-010-31"], 11: [334, "2022-11-30"], 12: [365, "2022-12-31"]}

damped_model = PredictionModel(damped_model_path, data_path)
model = PredictionModel(model_path, data_path)

def plot_daily_chart(result, month):
    fig, axes = plt.subplots(2,2, figsize=(15,15))

    axes[0][0].plot(result.ds, result.y, label='Train')
    axes[0][0].plot(result.ds, result.yhat, label='yhat')
    axes[0][0].plot(result.ds, result.upper_bound, label='Upper Bound')
    axes[0][0].plot(result.ds, result.lower_bound, label='Lower Bound')
    axes[0][0].set_xticklabels(result.ds.dt.date, rotation=45)
    axes[0][0].legend(loc='best')
    axes[0][0].set_title("Daily Forecast")
    axes[0][0].set_xlabel("Date")
    axes[0][0].set_ylabel("Receipt Count")
    axes[0][0].grid(True)

    monthly_result = result.drop('ds', axis=1).groupby(['year', 'month']).sum().reset_index()
    monthly_result['monthly'] = monthly_result['year'].astype(str) + '-' + monthly_result['month'].astype(str)
    monthly_result['y'].iloc[-int(month):] = np.nan
    monthly_result['yhat'].iloc[:12] = np.nan
    monthly_result['upper_bound'].iloc[:12] = np.nan
    monthly_result['lower_bound'].iloc[:12] = np.nan

    axes[1][0].plot(monthly_result.monthly, monthly_result.y, label='Train')
    axes[1][0].plot(monthly_result.monthly, monthly_result.yhat, label='yhat')
    axes[1][0].plot(monthly_result.monthly, monthly_result.upper_bound, label='Upper Bound')
    axes[1][0].plot(monthly_result.monthly, monthly_result.lower_bound, label='Lower Bound')
    axes[1][0].set_xticklabels(monthly_result.monthly, rotation=45)
    axes[1][0].legend(loc='best')
    axes[1][0].set_title("Monthly Forecast")
    axes[1][0].set_xlabel("Date")
    axes[1][0].set_ylabel("Receipt Count")
    axes[1][0].grid(True)
    
    axes[0][1].plot(result.ds, result.y, label='Train')
    axes[0][1].plot(result.ds, result.damped_yhat, label='yhat')
    axes[0][1].plot(result.ds, result.damped_upper_bound, label='Upper Bound')
    axes[0][1].plot(result.ds, result.damped_lower_bound, label='Lower Bound')
    axes[0][1].set_xticklabels(result.ds.dt.date, rotation=45)
    axes[0][1].legend(loc='best')
    axes[0][1].set_title("Damped Model - Daily Forecast")
    axes[0][1].set_xlabel("Date")
    axes[0][1].set_ylabel("Receipt Count")
    axes[0][1].grid(True)

    monthly_result['damped_yhat'].iloc[:12] = np.nan
    monthly_result['damped_upper_bound'].iloc[:12] = np.nan
    monthly_result['damped_lower_bound'].iloc[:12] = np.nan

    axes[1][1].plot(monthly_result.monthly, monthly_result.y, label='Train')
    axes[1][1].plot(monthly_result.monthly, monthly_result.damped_yhat, label='yhat')
    axes[1][1].plot(monthly_result.monthly, monthly_result.damped_upper_bound, label='Upper Bound')
    axes[1][1].plot(monthly_result.monthly, monthly_result.damped_lower_bound, label='Lower Bound')
    axes[1][1].set_xticklabels(monthly_result.monthly, rotation=45)
    axes[1][1].legend(loc='best')
    axes[1][1].set_title("Damped Model - Monthly Forecast")
    axes[1][1].set_xlabel("Date")
    axes[1][1].set_ylabel("Receipt Count")
    axes[1][1].grid(True)

    fig.tight_layout()
    
    return fig


def cal_result(alpha, month):
    alpha = float(alpha)
    period = months[int(month)][0]
    train_data_len = model.df.shape[0]
    yhat, intervals = model.predict(period, alpha)
    damped_yhat, damped_intervals = damped_model.predict(period, alpha)

    START = "2021-01-01"
    END = months[int(month)][1]
    
    result = pd.DataFrame({
        'ds': pd.date_range(START, END, freq='D'),
        'y': list(model.df.receipt_count.values) + [np.nan] * period, 
        'yhat': [np.nan] * train_data_len + list(yhat),
        'upper_bound': [np.nan] * train_data_len + list(intervals[1]),
        'lower_bound': [np.nan] * train_data_len + list(intervals[0]),
        'damped_yhat': [np.nan] * train_data_len + list(damped_yhat),
        'damped_upper_bound': [np.nan] * train_data_len + list(damped_intervals[1]),
        'damped_lower_bound': [np.nan] * train_data_len + list(damped_intervals[0])
    })

    result['year'] = result.ds.dt.year
    result['month'] = result.ds.dt.month

    daily_chart = plot_daily_chart(result, month)
    
    return daily_chart


with gr.Blocks() as demo:
    with gr.Row():
        alpha = gr.Dropdown(choices=["0.1", "0.05", "0.01"], label="Significance level", info="The significance level for the confidence intervals.", value="0.05", name="alpha")
        month = gr.Dropdown(choices=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"], label="Forecast period", info="The number of months to forecast.", value="12", name="period")
    
    submit = gr.Button(text="Submit", label="Submit", type="submit")
    
    daily = gr.Plot()

    submit.click(fn=cal_result, inputs=[alpha, month], outputs=daily)


demo.launch()