Spaces:
Sleeping
Sleeping
Sagar Thacker
commited on
Commit
·
22fca73
1
Parent(s):
6d3145a
adding files
Browse files- Pipfile +17 -0
- Pipfile.lock +0 -0
- app.py +122 -0
- data/data_daily.csv +366 -0
- model.py +31 -0
- models/damped_hw_model.pkl +3 -0
- models/hw_model.pkl +3 -0
Pipfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[[source]]
|
| 2 |
+
url = "https://pypi.org/simple"
|
| 3 |
+
verify_ssl = true
|
| 4 |
+
name = "pypi"
|
| 5 |
+
|
| 6 |
+
[packages]
|
| 7 |
+
statsmodels = "*"
|
| 8 |
+
pandas = "*"
|
| 9 |
+
numpy = "*"
|
| 10 |
+
matplotlib = "*"
|
| 11 |
+
gradio = "*"
|
| 12 |
+
zipp = "*"
|
| 13 |
+
|
| 14 |
+
[dev-packages]
|
| 15 |
+
|
| 16 |
+
[requires]
|
| 17 |
+
python_version = "3.9"
|
Pipfile.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
|
| 6 |
+
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
| 7 |
+
from model import PredictionModel
|
| 8 |
+
|
| 9 |
+
data_path = './data/data_daily.csv'
|
| 10 |
+
damped_model_path = './models/damped_hw_model.pkl'
|
| 11 |
+
model_path = './models/hw_model.pkl'
|
| 12 |
+
|
| 13 |
+
months = {1: [31, "2022-01-31"], 2: [59, "2022-02-28"], 3: [90, "2022-03-31"], 4: [120, "2022-04-30"], 5: [151, "2022-05-31"], 6: [181, "2022-06-30"], 7: [212, "2022-07-31"], 8: [243, "2022-08-31"], 9: [273, "2022-09-30"], 10: [304, "2022-010-31"], 11: [334, "2022-11-30"], 12: [365, "2022-12-31"]}
|
| 14 |
+
|
| 15 |
+
damped_model = PredictionModel(damped_model_path, data_path)
|
| 16 |
+
model = PredictionModel(model_path, data_path)
|
| 17 |
+
|
| 18 |
+
def plot_daily_chart(result, month):
|
| 19 |
+
fig, axes = plt.subplots(2,2, figsize=(15,15))
|
| 20 |
+
|
| 21 |
+
axes[0][0].plot(result.ds, result.y, label='Train')
|
| 22 |
+
axes[0][0].plot(result.ds, result.yhat, label='yhat')
|
| 23 |
+
axes[0][0].plot(result.ds, result.upper_bound, label='Upper Bound')
|
| 24 |
+
axes[0][0].plot(result.ds, result.lower_bound, label='Lower Bound')
|
| 25 |
+
axes[0][0].set_xticklabels(result.ds.dt.date, rotation=45)
|
| 26 |
+
axes[0][0].legend(loc='best')
|
| 27 |
+
axes[0][0].set_title("Daily Forecast")
|
| 28 |
+
axes[0][0].set_xlabel("Date")
|
| 29 |
+
axes[0][0].set_ylabel("Receipt Count")
|
| 30 |
+
axes[0][0].grid(True)
|
| 31 |
+
|
| 32 |
+
monthly_result = result.drop('ds', axis=1).groupby(['year', 'month']).sum().reset_index()
|
| 33 |
+
monthly_result['monthly'] = monthly_result['year'].astype(str) + '-' + monthly_result['month'].astype(str)
|
| 34 |
+
monthly_result['y'].iloc[-int(month):] = np.nan
|
| 35 |
+
monthly_result['yhat'].iloc[:12] = np.nan
|
| 36 |
+
monthly_result['upper_bound'].iloc[:12] = np.nan
|
| 37 |
+
monthly_result['lower_bound'].iloc[:12] = np.nan
|
| 38 |
+
|
| 39 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.y, label='Train')
|
| 40 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.yhat, label='yhat')
|
| 41 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.upper_bound, label='Upper Bound')
|
| 42 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.lower_bound, label='Lower Bound')
|
| 43 |
+
axes[1][0].set_xticklabels(monthly_result.monthly, rotation=45)
|
| 44 |
+
axes[1][0].legend(loc='best')
|
| 45 |
+
axes[1][0].set_title("Monthly Forecast")
|
| 46 |
+
axes[1][0].set_xlabel("Date")
|
| 47 |
+
axes[1][0].set_ylabel("Receipt Count")
|
| 48 |
+
axes[1][0].grid(True)
|
| 49 |
+
|
| 50 |
+
axes[0][1].plot(result.ds, result.y, label='Train')
|
| 51 |
+
axes[0][1].plot(result.ds, result.damped_yhat, label='yhat')
|
| 52 |
+
axes[0][1].plot(result.ds, result.damped_upper_bound, label='Upper Bound')
|
| 53 |
+
axes[0][1].plot(result.ds, result.damped_lower_bound, label='Lower Bound')
|
| 54 |
+
axes[0][1].set_xticklabels(result.ds.dt.date, rotation=45)
|
| 55 |
+
axes[0][1].legend(loc='best')
|
| 56 |
+
axes[0][1].set_title("Damped Model - Daily Forecast")
|
| 57 |
+
axes[0][1].set_xlabel("Date")
|
| 58 |
+
axes[0][1].set_ylabel("Receipt Count")
|
| 59 |
+
axes[0][1].grid(True)
|
| 60 |
+
|
| 61 |
+
monthly_result['damped_yhat'].iloc[:12] = np.nan
|
| 62 |
+
monthly_result['damped_upper_bound'].iloc[:12] = np.nan
|
| 63 |
+
monthly_result['damped_lower_bound'].iloc[:12] = np.nan
|
| 64 |
+
|
| 65 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.y, label='Train')
|
| 66 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.damped_yhat, label='yhat')
|
| 67 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.damped_upper_bound, label='Upper Bound')
|
| 68 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.damped_lower_bound, label='Lower Bound')
|
| 69 |
+
axes[1][1].set_xticklabels(monthly_result.monthly, rotation=45)
|
| 70 |
+
axes[1][1].legend(loc='best')
|
| 71 |
+
axes[1][1].set_title("Damped Model - Monthly Forecast")
|
| 72 |
+
axes[1][1].set_xlabel("Date")
|
| 73 |
+
axes[1][1].set_ylabel("Receipt Count")
|
| 74 |
+
axes[1][1].grid(True)
|
| 75 |
+
|
| 76 |
+
fig.tight_layout()
|
| 77 |
+
|
| 78 |
+
return fig
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def cal_result(alpha, month):
|
| 82 |
+
alpha = float(alpha)
|
| 83 |
+
period = months[int(month)][0]
|
| 84 |
+
train_data_len = model.df.shape[0]
|
| 85 |
+
yhat, intervals = model.predict(period, alpha)
|
| 86 |
+
damped_yhat, damped_intervals = damped_model.predict(period, alpha)
|
| 87 |
+
|
| 88 |
+
START = "2021-01-01"
|
| 89 |
+
END = months[int(month)][1]
|
| 90 |
+
|
| 91 |
+
result = pd.DataFrame({
|
| 92 |
+
'ds': pd.date_range(START, END, freq='D'),
|
| 93 |
+
'y': list(model.df.receipt_count.values) + [np.nan] * period,
|
| 94 |
+
'yhat': [np.nan] * train_data_len + list(yhat),
|
| 95 |
+
'upper_bound': [np.nan] * train_data_len + list(intervals[1]),
|
| 96 |
+
'lower_bound': [np.nan] * train_data_len + list(intervals[0]),
|
| 97 |
+
'damped_yhat': [np.nan] * train_data_len + list(damped_yhat),
|
| 98 |
+
'damped_upper_bound': [np.nan] * train_data_len + list(damped_intervals[1]),
|
| 99 |
+
'damped_lower_bound': [np.nan] * train_data_len + list(damped_intervals[0])
|
| 100 |
+
})
|
| 101 |
+
|
| 102 |
+
result['year'] = result.ds.dt.year
|
| 103 |
+
result['month'] = result.ds.dt.month
|
| 104 |
+
|
| 105 |
+
daily_chart = plot_daily_chart(result, month)
|
| 106 |
+
|
| 107 |
+
return daily_chart
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
with gr.Blocks() as demo:
|
| 111 |
+
with gr.Row():
|
| 112 |
+
alpha = gr.Dropdown(choices=["0.1", "0.05", "0.01"], label="Significance level", info="The significance level for the confidence intervals.", value="0.05", name="alpha")
|
| 113 |
+
month = gr.Dropdown(choices=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"], label="Forecast period", info="The number of months to forecast.", value="12", name="period")
|
| 114 |
+
|
| 115 |
+
submit = gr.Button(text="Submit", label="Submit", type="submit")
|
| 116 |
+
|
| 117 |
+
daily = gr.Plot()
|
| 118 |
+
|
| 119 |
+
submit.click(fn=cal_result, inputs=[alpha, month], outputs=daily)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
demo.launch()
|
data/data_daily.csv
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Date,Receipt_Count
|
| 2 |
+
2021-01-01,7564766
|
| 3 |
+
2021-01-02,7455524
|
| 4 |
+
2021-01-03,7095414
|
| 5 |
+
2021-01-04,7666163
|
| 6 |
+
2021-01-05,7771289
|
| 7 |
+
2021-01-06,7473320
|
| 8 |
+
2021-01-07,7832624
|
| 9 |
+
2021-01-08,7765028
|
| 10 |
+
2021-01-09,7385245
|
| 11 |
+
2021-01-10,7392087
|
| 12 |
+
2021-01-11,7738899
|
| 13 |
+
2021-01-12,7840830
|
| 14 |
+
2021-01-13,8122546
|
| 15 |
+
2021-01-14,7694195
|
| 16 |
+
2021-01-15,7200595
|
| 17 |
+
2021-01-16,7744470
|
| 18 |
+
2021-01-17,7610648
|
| 19 |
+
2021-01-18,7880913
|
| 20 |
+
2021-01-19,7250032
|
| 21 |
+
2021-01-20,7666397
|
| 22 |
+
2021-01-21,7742477
|
| 23 |
+
2021-01-22,7807438
|
| 24 |
+
2021-01-23,7603625
|
| 25 |
+
2021-01-24,7572947
|
| 26 |
+
2021-01-25,7598153
|
| 27 |
+
2021-01-26,7194687
|
| 28 |
+
2021-01-27,7787109
|
| 29 |
+
2021-01-28,7631075
|
| 30 |
+
2021-01-29,7750536
|
| 31 |
+
2021-01-30,8059526
|
| 32 |
+
2021-01-31,7838129
|
| 33 |
+
2021-02-01,7714465
|
| 34 |
+
2021-02-02,7766408
|
| 35 |
+
2021-02-03,7832259
|
| 36 |
+
2021-02-04,7506461
|
| 37 |
+
2021-02-05,7816477
|
| 38 |
+
2021-02-06,7360372
|
| 39 |
+
2021-02-07,8039414
|
| 40 |
+
2021-02-08,7858632
|
| 41 |
+
2021-02-09,7810951
|
| 42 |
+
2021-02-10,7579882
|
| 43 |
+
2021-02-11,8127696
|
| 44 |
+
2021-02-12,7748085
|
| 45 |
+
2021-02-13,8117805
|
| 46 |
+
2021-02-14,7780006
|
| 47 |
+
2021-02-15,7916028
|
| 48 |
+
2021-02-16,7736671
|
| 49 |
+
2021-02-17,8082781
|
| 50 |
+
2021-02-18,7824063
|
| 51 |
+
2021-02-19,7761256
|
| 52 |
+
2021-02-20,7821879
|
| 53 |
+
2021-02-21,7760399
|
| 54 |
+
2021-02-22,8330147
|
| 55 |
+
2021-02-23,8053953
|
| 56 |
+
2021-02-24,7816117
|
| 57 |
+
2021-02-25,8156649
|
| 58 |
+
2021-02-26,7857443
|
| 59 |
+
2021-02-27,7881212
|
| 60 |
+
2021-02-28,7975949
|
| 61 |
+
2021-03-01,7970632
|
| 62 |
+
2021-03-02,7998865
|
| 63 |
+
2021-03-03,7748662
|
| 64 |
+
2021-03-04,8080043
|
| 65 |
+
2021-03-05,7971011
|
| 66 |
+
2021-03-06,8309959
|
| 67 |
+
2021-03-07,7945271
|
| 68 |
+
2021-03-08,8352635
|
| 69 |
+
2021-03-09,7861647
|
| 70 |
+
2021-03-10,7920726
|
| 71 |
+
2021-03-11,7921232
|
| 72 |
+
2021-03-12,8142874
|
| 73 |
+
2021-03-13,7731725
|
| 74 |
+
2021-03-14,8070687
|
| 75 |
+
2021-03-15,7825047
|
| 76 |
+
2021-03-16,7920469
|
| 77 |
+
2021-03-17,7946897
|
| 78 |
+
2021-03-18,8090998
|
| 79 |
+
2021-03-19,8415152
|
| 80 |
+
2021-03-20,8325436
|
| 81 |
+
2021-03-21,8105278
|
| 82 |
+
2021-03-22,7562433
|
| 83 |
+
2021-03-23,8096085
|
| 84 |
+
2021-03-24,8034268
|
| 85 |
+
2021-03-25,8050876
|
| 86 |
+
2021-03-26,8077321
|
| 87 |
+
2021-03-27,7999117
|
| 88 |
+
2021-03-28,8082481
|
| 89 |
+
2021-03-29,8126444
|
| 90 |
+
2021-03-30,7911341
|
| 91 |
+
2021-03-31,8013013
|
| 92 |
+
2021-04-01,8353242
|
| 93 |
+
2021-04-02,8042185
|
| 94 |
+
2021-04-03,8401675
|
| 95 |
+
2021-04-04,8134408
|
| 96 |
+
2021-04-05,8422480
|
| 97 |
+
2021-04-06,8140096
|
| 98 |
+
2021-04-07,8385138
|
| 99 |
+
2021-04-08,8619576
|
| 100 |
+
2021-04-09,7961949
|
| 101 |
+
2021-04-10,8388608
|
| 102 |
+
2021-04-11,8458290
|
| 103 |
+
2021-04-12,8206730
|
| 104 |
+
2021-04-13,8319338
|
| 105 |
+
2021-04-14,8726486
|
| 106 |
+
2021-04-15,8342572
|
| 107 |
+
2021-04-16,8438884
|
| 108 |
+
2021-04-17,8186918
|
| 109 |
+
2021-04-18,8195134
|
| 110 |
+
2021-04-19,8366630
|
| 111 |
+
2021-04-20,8282495
|
| 112 |
+
2021-04-21,8641338
|
| 113 |
+
2021-04-22,8521710
|
| 114 |
+
2021-04-23,8255078
|
| 115 |
+
2021-04-24,8221890
|
| 116 |
+
2021-04-25,8509398
|
| 117 |
+
2021-04-26,8055670
|
| 118 |
+
2021-04-27,8266410
|
| 119 |
+
2021-04-28,8367438
|
| 120 |
+
2021-04-29,8704248
|
| 121 |
+
2021-04-30,8728816
|
| 122 |
+
2021-05-01,8231674
|
| 123 |
+
2021-05-02,8278534
|
| 124 |
+
2021-05-03,8727522
|
| 125 |
+
2021-05-04,8649710
|
| 126 |
+
2021-05-05,8519563
|
| 127 |
+
2021-05-06,8435867
|
| 128 |
+
2021-05-07,8227322
|
| 129 |
+
2021-05-08,8383810
|
| 130 |
+
2021-05-09,8109287
|
| 131 |
+
2021-05-10,8518147
|
| 132 |
+
2021-05-11,8472640
|
| 133 |
+
2021-05-12,8359580
|
| 134 |
+
2021-05-13,8262562
|
| 135 |
+
2021-05-14,8503389
|
| 136 |
+
2021-05-15,8498352
|
| 137 |
+
2021-05-16,9066670
|
| 138 |
+
2021-05-17,8744235
|
| 139 |
+
2021-05-18,8688343
|
| 140 |
+
2021-05-19,8475700
|
| 141 |
+
2021-05-20,8471826
|
| 142 |
+
2021-05-21,9020316
|
| 143 |
+
2021-05-22,8399861
|
| 144 |
+
2021-05-23,8387758
|
| 145 |
+
2021-05-24,8637948
|
| 146 |
+
2021-05-25,8088783
|
| 147 |
+
2021-05-26,8148275
|
| 148 |
+
2021-05-27,8682340
|
| 149 |
+
2021-05-28,8879871
|
| 150 |
+
2021-05-29,8680501
|
| 151 |
+
2021-05-30,8083372
|
| 152 |
+
2021-05-31,8517990
|
| 153 |
+
2021-06-01,8491801
|
| 154 |
+
2021-06-02,9031534
|
| 155 |
+
2021-06-03,8319351
|
| 156 |
+
2021-06-04,8553246
|
| 157 |
+
2021-06-05,8534097
|
| 158 |
+
2021-06-06,8462584
|
| 159 |
+
2021-06-07,8691699
|
| 160 |
+
2021-06-08,8686964
|
| 161 |
+
2021-06-09,8550358
|
| 162 |
+
2021-06-10,8143101
|
| 163 |
+
2021-06-11,8645316
|
| 164 |
+
2021-06-12,8928652
|
| 165 |
+
2021-06-13,9082265
|
| 166 |
+
2021-06-14,8796515
|
| 167 |
+
2021-06-15,8629607
|
| 168 |
+
2021-06-16,8827278
|
| 169 |
+
2021-06-17,8946278
|
| 170 |
+
2021-06-18,8390857
|
| 171 |
+
2021-06-19,8782778
|
| 172 |
+
2021-06-20,8817338
|
| 173 |
+
2021-06-21,8543719
|
| 174 |
+
2021-06-22,8590990
|
| 175 |
+
2021-06-23,8774391
|
| 176 |
+
2021-06-24,8913737
|
| 177 |
+
2021-06-25,8665876
|
| 178 |
+
2021-06-26,8707038
|
| 179 |
+
2021-06-27,8869334
|
| 180 |
+
2021-06-28,9186579
|
| 181 |
+
2021-06-29,8372464
|
| 182 |
+
2021-06-30,8721093
|
| 183 |
+
2021-07-01,8704509
|
| 184 |
+
2021-07-02,8939614
|
| 185 |
+
2021-07-03,9267015
|
| 186 |
+
2021-07-04,8544557
|
| 187 |
+
2021-07-05,8735065
|
| 188 |
+
2021-07-06,8326629
|
| 189 |
+
2021-07-07,8831147
|
| 190 |
+
2021-07-08,8857992
|
| 191 |
+
2021-07-09,9160117
|
| 192 |
+
2021-07-10,8672036
|
| 193 |
+
2021-07-11,8670423
|
| 194 |
+
2021-07-12,8869283
|
| 195 |
+
2021-07-13,8686309
|
| 196 |
+
2021-07-14,8654144
|
| 197 |
+
2021-07-15,8860853
|
| 198 |
+
2021-07-16,9198488
|
| 199 |
+
2021-07-17,8960260
|
| 200 |
+
2021-07-18,9122667
|
| 201 |
+
2021-07-19,9138658
|
| 202 |
+
2021-07-20,8987305
|
| 203 |
+
2021-07-21,8899455
|
| 204 |
+
2021-07-22,9017914
|
| 205 |
+
2021-07-23,8480182
|
| 206 |
+
2021-07-24,8603099
|
| 207 |
+
2021-07-25,8636410
|
| 208 |
+
2021-07-26,8996817
|
| 209 |
+
2021-07-27,9024807
|
| 210 |
+
2021-07-28,9329236
|
| 211 |
+
2021-07-29,8979426
|
| 212 |
+
2021-07-30,8909272
|
| 213 |
+
2021-07-31,8712314
|
| 214 |
+
2021-08-01,8861903
|
| 215 |
+
2021-08-02,8913143
|
| 216 |
+
2021-08-03,9223398
|
| 217 |
+
2021-08-04,9410437
|
| 218 |
+
2021-08-05,9212329
|
| 219 |
+
2021-08-06,9062121
|
| 220 |
+
2021-08-07,9432522
|
| 221 |
+
2021-08-08,9111057
|
| 222 |
+
2021-08-09,8971236
|
| 223 |
+
2021-08-10,8799249
|
| 224 |
+
2021-08-11,9127038
|
| 225 |
+
2021-08-12,9362940
|
| 226 |
+
2021-08-13,9077857
|
| 227 |
+
2021-08-14,9413465
|
| 228 |
+
2021-08-15,8950079
|
| 229 |
+
2021-08-16,9215173
|
| 230 |
+
2021-08-17,9056307
|
| 231 |
+
2021-08-18,8968187
|
| 232 |
+
2021-08-19,9357610
|
| 233 |
+
2021-08-20,8971426
|
| 234 |
+
2021-08-21,9238276
|
| 235 |
+
2021-08-22,9372279
|
| 236 |
+
2021-08-23,9589375
|
| 237 |
+
2021-08-24,8961875
|
| 238 |
+
2021-08-25,9160096
|
| 239 |
+
2021-08-26,9052229
|
| 240 |
+
2021-08-27,8778271
|
| 241 |
+
2021-08-28,9245534
|
| 242 |
+
2021-08-29,9384023
|
| 243 |
+
2021-08-30,9474742
|
| 244 |
+
2021-08-31,9189054
|
| 245 |
+
2021-09-01,9167277
|
| 246 |
+
2021-09-02,9123056
|
| 247 |
+
2021-09-03,9251321
|
| 248 |
+
2021-09-04,9377700
|
| 249 |
+
2021-09-05,9782022
|
| 250 |
+
2021-09-06,8930331
|
| 251 |
+
2021-09-07,9718666
|
| 252 |
+
2021-09-08,9262001
|
| 253 |
+
2021-09-09,9095889
|
| 254 |
+
2021-09-10,9364629
|
| 255 |
+
2021-09-11,9508131
|
| 256 |
+
2021-09-12,9264013
|
| 257 |
+
2021-09-13,9461281
|
| 258 |
+
2021-09-14,9032235
|
| 259 |
+
2021-09-15,9574777
|
| 260 |
+
2021-09-16,9189740
|
| 261 |
+
2021-09-17,9508023
|
| 262 |
+
2021-09-18,9580631
|
| 263 |
+
2021-09-19,9697272
|
| 264 |
+
2021-09-20,9292315
|
| 265 |
+
2021-09-21,9090518
|
| 266 |
+
2021-09-22,9294810
|
| 267 |
+
2021-09-23,9400956
|
| 268 |
+
2021-09-24,9871832
|
| 269 |
+
2021-09-25,9569204
|
| 270 |
+
2021-09-26,9583588
|
| 271 |
+
2021-09-27,9412385
|
| 272 |
+
2021-09-28,9221235
|
| 273 |
+
2021-09-29,9328174
|
| 274 |
+
2021-09-30,9192142
|
| 275 |
+
2021-10-01,9432155
|
| 276 |
+
2021-10-02,9755500
|
| 277 |
+
2021-10-03,9562636
|
| 278 |
+
2021-10-04,9497084
|
| 279 |
+
2021-10-05,9656472
|
| 280 |
+
2021-10-06,9461320
|
| 281 |
+
2021-10-07,9363588
|
| 282 |
+
2021-10-08,9834844
|
| 283 |
+
2021-10-09,9113802
|
| 284 |
+
2021-10-10,9290592
|
| 285 |
+
2021-10-11,9282316
|
| 286 |
+
2021-10-12,9725761
|
| 287 |
+
2021-10-13,9449353
|
| 288 |
+
2021-10-14,9492895
|
| 289 |
+
2021-10-15,9599402
|
| 290 |
+
2021-10-16,9664876
|
| 291 |
+
2021-10-17,9702569
|
| 292 |
+
2021-10-18,9574962
|
| 293 |
+
2021-10-19,9540428
|
| 294 |
+
2021-10-20,9617606
|
| 295 |
+
2021-10-21,9509561
|
| 296 |
+
2021-10-22,9417190
|
| 297 |
+
2021-10-23,9748484
|
| 298 |
+
2021-10-24,9476970
|
| 299 |
+
2021-10-25,9373507
|
| 300 |
+
2021-10-26,9646801
|
| 301 |
+
2021-10-27,9635634
|
| 302 |
+
2021-10-28,9530612
|
| 303 |
+
2021-10-29,9627467
|
| 304 |
+
2021-10-30,9879362
|
| 305 |
+
2021-10-31,9501436
|
| 306 |
+
2021-11-01,9631220
|
| 307 |
+
2021-11-02,10004975
|
| 308 |
+
2021-11-03,9749567
|
| 309 |
+
2021-11-04,9925777
|
| 310 |
+
2021-11-05,9863408
|
| 311 |
+
2021-11-06,9933505
|
| 312 |
+
2021-11-07,9383028
|
| 313 |
+
2021-11-08,9607159
|
| 314 |
+
2021-11-09,9707735
|
| 315 |
+
2021-11-10,9691895
|
| 316 |
+
2021-11-11,9854091
|
| 317 |
+
2021-11-12,9695957
|
| 318 |
+
2021-11-13,10047149
|
| 319 |
+
2021-11-14,9845653
|
| 320 |
+
2021-11-15,9656831
|
| 321 |
+
2021-11-16,10285056
|
| 322 |
+
2021-11-17,9606579
|
| 323 |
+
2021-11-18,9928425
|
| 324 |
+
2021-11-19,9980182
|
| 325 |
+
2021-11-20,9915679
|
| 326 |
+
2021-11-21,9837099
|
| 327 |
+
2021-11-22,9608834
|
| 328 |
+
2021-11-23,9893666
|
| 329 |
+
2021-11-24,9897017
|
| 330 |
+
2021-11-25,10129048
|
| 331 |
+
2021-11-26,9828852
|
| 332 |
+
2021-11-27,10014982
|
| 333 |
+
2021-11-28,10057900
|
| 334 |
+
2021-11-29,10204676
|
| 335 |
+
2021-11-30,10299217
|
| 336 |
+
2021-12-01,9731627
|
| 337 |
+
2021-12-02,9674146
|
| 338 |
+
2021-12-03,9679469
|
| 339 |
+
2021-12-04,10060861
|
| 340 |
+
2021-12-05,9771507
|
| 341 |
+
2021-12-06,9726983
|
| 342 |
+
2021-12-07,10152789
|
| 343 |
+
2021-12-08,9961637
|
| 344 |
+
2021-12-09,9888931
|
| 345 |
+
2021-12-10,10016144
|
| 346 |
+
2021-12-11,10025271
|
| 347 |
+
2021-12-12,10013123
|
| 348 |
+
2021-12-13,10144930
|
| 349 |
+
2021-12-14,10246870
|
| 350 |
+
2021-12-15,9838107
|
| 351 |
+
2021-12-16,9845904
|
| 352 |
+
2021-12-17,10220516
|
| 353 |
+
2021-12-18,9835059
|
| 354 |
+
2021-12-19,9572522
|
| 355 |
+
2021-12-20,10379305
|
| 356 |
+
2021-12-21,9680446
|
| 357 |
+
2021-12-22,10124238
|
| 358 |
+
2021-12-23,9464659
|
| 359 |
+
2021-12-24,9703857
|
| 360 |
+
2021-12-25,10045897
|
| 361 |
+
2021-12-26,10738865
|
| 362 |
+
2021-12-27,10350408
|
| 363 |
+
2021-12-28,10219445
|
| 364 |
+
2021-12-29,10313337
|
| 365 |
+
2021-12-30,10310644
|
| 366 |
+
2021-12-31,10211187
|
model.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
class PredictionModel:
|
| 6 |
+
def __init__(self, model_path, data_path):
|
| 7 |
+
self.model_path = model_path
|
| 8 |
+
self.data_path = data_path
|
| 9 |
+
self.load_model()
|
| 10 |
+
self.load_data()
|
| 11 |
+
|
| 12 |
+
def load_model(self):
|
| 13 |
+
with open(self.model_path, 'rb') as f:
|
| 14 |
+
self.model = pickle.load(f)
|
| 15 |
+
|
| 16 |
+
def load_data(self):
|
| 17 |
+
self.df = pd.read_csv(self.data_path)
|
| 18 |
+
self.df.columns = ['date', 'receipt_count']
|
| 19 |
+
|
| 20 |
+
def predict(self, period, alpha=0.05):
|
| 21 |
+
yhat = self.model.forecast(period)
|
| 22 |
+
intervals = self.compute_confidence_intervals(alpha, yhat)
|
| 23 |
+
return yhat, intervals
|
| 24 |
+
|
| 25 |
+
def compute_confidence_intervals(self, alpha, yhat):
|
| 26 |
+
residuals = self.df.receipt_count - self.model.fittedvalues
|
| 27 |
+
z = abs(np.percentile(np.random.standard_normal(10000), [100 * alpha/2, 100 * (1 - alpha/2)]))
|
| 28 |
+
std_residual = residuals.std()
|
| 29 |
+
interval_upper = yhat + z[1] * std_residual * np.sqrt(1 + 1/len(self.df))
|
| 30 |
+
interval_lower = yhat - z[1] * std_residual * np.sqrt(1 + 1/len(self.df))
|
| 31 |
+
return [interval_lower, interval_upper]
|
models/damped_hw_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe2517c3cb675a082dd0649e4d027ec4bb99019a2cfa4e9b1c92fa7b3292d050
|
| 3 |
+
size 28498
|
models/hw_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b54f6bc85ef9993b414a03a8ea140212bce994e5a044fa91425c3c04568ad229
|
| 3 |
+
size 28456
|