Spaces:
Sleeping
Sleeping
Sagar Thacker
commited on
Commit
·
22fca73
1
Parent(s):
6d3145a
adding files
Browse files- Pipfile +17 -0
- Pipfile.lock +0 -0
- app.py +122 -0
- data/data_daily.csv +366 -0
- model.py +31 -0
- models/damped_hw_model.pkl +3 -0
- models/hw_model.pkl +3 -0
Pipfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[[source]]
|
2 |
+
url = "https://pypi.org/simple"
|
3 |
+
verify_ssl = true
|
4 |
+
name = "pypi"
|
5 |
+
|
6 |
+
[packages]
|
7 |
+
statsmodels = "*"
|
8 |
+
pandas = "*"
|
9 |
+
numpy = "*"
|
10 |
+
matplotlib = "*"
|
11 |
+
gradio = "*"
|
12 |
+
zipp = "*"
|
13 |
+
|
14 |
+
[dev-packages]
|
15 |
+
|
16 |
+
[requires]
|
17 |
+
python_version = "3.9"
|
Pipfile.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
7 |
+
from model import PredictionModel
|
8 |
+
|
9 |
+
data_path = './data/data_daily.csv'
|
10 |
+
damped_model_path = './models/damped_hw_model.pkl'
|
11 |
+
model_path = './models/hw_model.pkl'
|
12 |
+
|
13 |
+
months = {1: [31, "2022-01-31"], 2: [59, "2022-02-28"], 3: [90, "2022-03-31"], 4: [120, "2022-04-30"], 5: [151, "2022-05-31"], 6: [181, "2022-06-30"], 7: [212, "2022-07-31"], 8: [243, "2022-08-31"], 9: [273, "2022-09-30"], 10: [304, "2022-010-31"], 11: [334, "2022-11-30"], 12: [365, "2022-12-31"]}
|
14 |
+
|
15 |
+
damped_model = PredictionModel(damped_model_path, data_path)
|
16 |
+
model = PredictionModel(model_path, data_path)
|
17 |
+
|
18 |
+
def plot_daily_chart(result, month):
|
19 |
+
fig, axes = plt.subplots(2,2, figsize=(15,15))
|
20 |
+
|
21 |
+
axes[0][0].plot(result.ds, result.y, label='Train')
|
22 |
+
axes[0][0].plot(result.ds, result.yhat, label='yhat')
|
23 |
+
axes[0][0].plot(result.ds, result.upper_bound, label='Upper Bound')
|
24 |
+
axes[0][0].plot(result.ds, result.lower_bound, label='Lower Bound')
|
25 |
+
axes[0][0].set_xticklabels(result.ds.dt.date, rotation=45)
|
26 |
+
axes[0][0].legend(loc='best')
|
27 |
+
axes[0][0].set_title("Daily Forecast")
|
28 |
+
axes[0][0].set_xlabel("Date")
|
29 |
+
axes[0][0].set_ylabel("Receipt Count")
|
30 |
+
axes[0][0].grid(True)
|
31 |
+
|
32 |
+
monthly_result = result.drop('ds', axis=1).groupby(['year', 'month']).sum().reset_index()
|
33 |
+
monthly_result['monthly'] = monthly_result['year'].astype(str) + '-' + monthly_result['month'].astype(str)
|
34 |
+
monthly_result['y'].iloc[-int(month):] = np.nan
|
35 |
+
monthly_result['yhat'].iloc[:12] = np.nan
|
36 |
+
monthly_result['upper_bound'].iloc[:12] = np.nan
|
37 |
+
monthly_result['lower_bound'].iloc[:12] = np.nan
|
38 |
+
|
39 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.y, label='Train')
|
40 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.yhat, label='yhat')
|
41 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.upper_bound, label='Upper Bound')
|
42 |
+
axes[1][0].plot(monthly_result.monthly, monthly_result.lower_bound, label='Lower Bound')
|
43 |
+
axes[1][0].set_xticklabels(monthly_result.monthly, rotation=45)
|
44 |
+
axes[1][0].legend(loc='best')
|
45 |
+
axes[1][0].set_title("Monthly Forecast")
|
46 |
+
axes[1][0].set_xlabel("Date")
|
47 |
+
axes[1][0].set_ylabel("Receipt Count")
|
48 |
+
axes[1][0].grid(True)
|
49 |
+
|
50 |
+
axes[0][1].plot(result.ds, result.y, label='Train')
|
51 |
+
axes[0][1].plot(result.ds, result.damped_yhat, label='yhat')
|
52 |
+
axes[0][1].plot(result.ds, result.damped_upper_bound, label='Upper Bound')
|
53 |
+
axes[0][1].plot(result.ds, result.damped_lower_bound, label='Lower Bound')
|
54 |
+
axes[0][1].set_xticklabels(result.ds.dt.date, rotation=45)
|
55 |
+
axes[0][1].legend(loc='best')
|
56 |
+
axes[0][1].set_title("Damped Model - Daily Forecast")
|
57 |
+
axes[0][1].set_xlabel("Date")
|
58 |
+
axes[0][1].set_ylabel("Receipt Count")
|
59 |
+
axes[0][1].grid(True)
|
60 |
+
|
61 |
+
monthly_result['damped_yhat'].iloc[:12] = np.nan
|
62 |
+
monthly_result['damped_upper_bound'].iloc[:12] = np.nan
|
63 |
+
monthly_result['damped_lower_bound'].iloc[:12] = np.nan
|
64 |
+
|
65 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.y, label='Train')
|
66 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.damped_yhat, label='yhat')
|
67 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.damped_upper_bound, label='Upper Bound')
|
68 |
+
axes[1][1].plot(monthly_result.monthly, monthly_result.damped_lower_bound, label='Lower Bound')
|
69 |
+
axes[1][1].set_xticklabels(monthly_result.monthly, rotation=45)
|
70 |
+
axes[1][1].legend(loc='best')
|
71 |
+
axes[1][1].set_title("Damped Model - Monthly Forecast")
|
72 |
+
axes[1][1].set_xlabel("Date")
|
73 |
+
axes[1][1].set_ylabel("Receipt Count")
|
74 |
+
axes[1][1].grid(True)
|
75 |
+
|
76 |
+
fig.tight_layout()
|
77 |
+
|
78 |
+
return fig
|
79 |
+
|
80 |
+
|
81 |
+
def cal_result(alpha, month):
|
82 |
+
alpha = float(alpha)
|
83 |
+
period = months[int(month)][0]
|
84 |
+
train_data_len = model.df.shape[0]
|
85 |
+
yhat, intervals = model.predict(period, alpha)
|
86 |
+
damped_yhat, damped_intervals = damped_model.predict(period, alpha)
|
87 |
+
|
88 |
+
START = "2021-01-01"
|
89 |
+
END = months[int(month)][1]
|
90 |
+
|
91 |
+
result = pd.DataFrame({
|
92 |
+
'ds': pd.date_range(START, END, freq='D'),
|
93 |
+
'y': list(model.df.receipt_count.values) + [np.nan] * period,
|
94 |
+
'yhat': [np.nan] * train_data_len + list(yhat),
|
95 |
+
'upper_bound': [np.nan] * train_data_len + list(intervals[1]),
|
96 |
+
'lower_bound': [np.nan] * train_data_len + list(intervals[0]),
|
97 |
+
'damped_yhat': [np.nan] * train_data_len + list(damped_yhat),
|
98 |
+
'damped_upper_bound': [np.nan] * train_data_len + list(damped_intervals[1]),
|
99 |
+
'damped_lower_bound': [np.nan] * train_data_len + list(damped_intervals[0])
|
100 |
+
})
|
101 |
+
|
102 |
+
result['year'] = result.ds.dt.year
|
103 |
+
result['month'] = result.ds.dt.month
|
104 |
+
|
105 |
+
daily_chart = plot_daily_chart(result, month)
|
106 |
+
|
107 |
+
return daily_chart
|
108 |
+
|
109 |
+
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
with gr.Row():
|
112 |
+
alpha = gr.Dropdown(choices=["0.1", "0.05", "0.01"], label="Significance level", info="The significance level for the confidence intervals.", value="0.05", name="alpha")
|
113 |
+
month = gr.Dropdown(choices=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"], label="Forecast period", info="The number of months to forecast.", value="12", name="period")
|
114 |
+
|
115 |
+
submit = gr.Button(text="Submit", label="Submit", type="submit")
|
116 |
+
|
117 |
+
daily = gr.Plot()
|
118 |
+
|
119 |
+
submit.click(fn=cal_result, inputs=[alpha, month], outputs=daily)
|
120 |
+
|
121 |
+
|
122 |
+
demo.launch()
|
data/data_daily.csv
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Date,Receipt_Count
|
2 |
+
2021-01-01,7564766
|
3 |
+
2021-01-02,7455524
|
4 |
+
2021-01-03,7095414
|
5 |
+
2021-01-04,7666163
|
6 |
+
2021-01-05,7771289
|
7 |
+
2021-01-06,7473320
|
8 |
+
2021-01-07,7832624
|
9 |
+
2021-01-08,7765028
|
10 |
+
2021-01-09,7385245
|
11 |
+
2021-01-10,7392087
|
12 |
+
2021-01-11,7738899
|
13 |
+
2021-01-12,7840830
|
14 |
+
2021-01-13,8122546
|
15 |
+
2021-01-14,7694195
|
16 |
+
2021-01-15,7200595
|
17 |
+
2021-01-16,7744470
|
18 |
+
2021-01-17,7610648
|
19 |
+
2021-01-18,7880913
|
20 |
+
2021-01-19,7250032
|
21 |
+
2021-01-20,7666397
|
22 |
+
2021-01-21,7742477
|
23 |
+
2021-01-22,7807438
|
24 |
+
2021-01-23,7603625
|
25 |
+
2021-01-24,7572947
|
26 |
+
2021-01-25,7598153
|
27 |
+
2021-01-26,7194687
|
28 |
+
2021-01-27,7787109
|
29 |
+
2021-01-28,7631075
|
30 |
+
2021-01-29,7750536
|
31 |
+
2021-01-30,8059526
|
32 |
+
2021-01-31,7838129
|
33 |
+
2021-02-01,7714465
|
34 |
+
2021-02-02,7766408
|
35 |
+
2021-02-03,7832259
|
36 |
+
2021-02-04,7506461
|
37 |
+
2021-02-05,7816477
|
38 |
+
2021-02-06,7360372
|
39 |
+
2021-02-07,8039414
|
40 |
+
2021-02-08,7858632
|
41 |
+
2021-02-09,7810951
|
42 |
+
2021-02-10,7579882
|
43 |
+
2021-02-11,8127696
|
44 |
+
2021-02-12,7748085
|
45 |
+
2021-02-13,8117805
|
46 |
+
2021-02-14,7780006
|
47 |
+
2021-02-15,7916028
|
48 |
+
2021-02-16,7736671
|
49 |
+
2021-02-17,8082781
|
50 |
+
2021-02-18,7824063
|
51 |
+
2021-02-19,7761256
|
52 |
+
2021-02-20,7821879
|
53 |
+
2021-02-21,7760399
|
54 |
+
2021-02-22,8330147
|
55 |
+
2021-02-23,8053953
|
56 |
+
2021-02-24,7816117
|
57 |
+
2021-02-25,8156649
|
58 |
+
2021-02-26,7857443
|
59 |
+
2021-02-27,7881212
|
60 |
+
2021-02-28,7975949
|
61 |
+
2021-03-01,7970632
|
62 |
+
2021-03-02,7998865
|
63 |
+
2021-03-03,7748662
|
64 |
+
2021-03-04,8080043
|
65 |
+
2021-03-05,7971011
|
66 |
+
2021-03-06,8309959
|
67 |
+
2021-03-07,7945271
|
68 |
+
2021-03-08,8352635
|
69 |
+
2021-03-09,7861647
|
70 |
+
2021-03-10,7920726
|
71 |
+
2021-03-11,7921232
|
72 |
+
2021-03-12,8142874
|
73 |
+
2021-03-13,7731725
|
74 |
+
2021-03-14,8070687
|
75 |
+
2021-03-15,7825047
|
76 |
+
2021-03-16,7920469
|
77 |
+
2021-03-17,7946897
|
78 |
+
2021-03-18,8090998
|
79 |
+
2021-03-19,8415152
|
80 |
+
2021-03-20,8325436
|
81 |
+
2021-03-21,8105278
|
82 |
+
2021-03-22,7562433
|
83 |
+
2021-03-23,8096085
|
84 |
+
2021-03-24,8034268
|
85 |
+
2021-03-25,8050876
|
86 |
+
2021-03-26,8077321
|
87 |
+
2021-03-27,7999117
|
88 |
+
2021-03-28,8082481
|
89 |
+
2021-03-29,8126444
|
90 |
+
2021-03-30,7911341
|
91 |
+
2021-03-31,8013013
|
92 |
+
2021-04-01,8353242
|
93 |
+
2021-04-02,8042185
|
94 |
+
2021-04-03,8401675
|
95 |
+
2021-04-04,8134408
|
96 |
+
2021-04-05,8422480
|
97 |
+
2021-04-06,8140096
|
98 |
+
2021-04-07,8385138
|
99 |
+
2021-04-08,8619576
|
100 |
+
2021-04-09,7961949
|
101 |
+
2021-04-10,8388608
|
102 |
+
2021-04-11,8458290
|
103 |
+
2021-04-12,8206730
|
104 |
+
2021-04-13,8319338
|
105 |
+
2021-04-14,8726486
|
106 |
+
2021-04-15,8342572
|
107 |
+
2021-04-16,8438884
|
108 |
+
2021-04-17,8186918
|
109 |
+
2021-04-18,8195134
|
110 |
+
2021-04-19,8366630
|
111 |
+
2021-04-20,8282495
|
112 |
+
2021-04-21,8641338
|
113 |
+
2021-04-22,8521710
|
114 |
+
2021-04-23,8255078
|
115 |
+
2021-04-24,8221890
|
116 |
+
2021-04-25,8509398
|
117 |
+
2021-04-26,8055670
|
118 |
+
2021-04-27,8266410
|
119 |
+
2021-04-28,8367438
|
120 |
+
2021-04-29,8704248
|
121 |
+
2021-04-30,8728816
|
122 |
+
2021-05-01,8231674
|
123 |
+
2021-05-02,8278534
|
124 |
+
2021-05-03,8727522
|
125 |
+
2021-05-04,8649710
|
126 |
+
2021-05-05,8519563
|
127 |
+
2021-05-06,8435867
|
128 |
+
2021-05-07,8227322
|
129 |
+
2021-05-08,8383810
|
130 |
+
2021-05-09,8109287
|
131 |
+
2021-05-10,8518147
|
132 |
+
2021-05-11,8472640
|
133 |
+
2021-05-12,8359580
|
134 |
+
2021-05-13,8262562
|
135 |
+
2021-05-14,8503389
|
136 |
+
2021-05-15,8498352
|
137 |
+
2021-05-16,9066670
|
138 |
+
2021-05-17,8744235
|
139 |
+
2021-05-18,8688343
|
140 |
+
2021-05-19,8475700
|
141 |
+
2021-05-20,8471826
|
142 |
+
2021-05-21,9020316
|
143 |
+
2021-05-22,8399861
|
144 |
+
2021-05-23,8387758
|
145 |
+
2021-05-24,8637948
|
146 |
+
2021-05-25,8088783
|
147 |
+
2021-05-26,8148275
|
148 |
+
2021-05-27,8682340
|
149 |
+
2021-05-28,8879871
|
150 |
+
2021-05-29,8680501
|
151 |
+
2021-05-30,8083372
|
152 |
+
2021-05-31,8517990
|
153 |
+
2021-06-01,8491801
|
154 |
+
2021-06-02,9031534
|
155 |
+
2021-06-03,8319351
|
156 |
+
2021-06-04,8553246
|
157 |
+
2021-06-05,8534097
|
158 |
+
2021-06-06,8462584
|
159 |
+
2021-06-07,8691699
|
160 |
+
2021-06-08,8686964
|
161 |
+
2021-06-09,8550358
|
162 |
+
2021-06-10,8143101
|
163 |
+
2021-06-11,8645316
|
164 |
+
2021-06-12,8928652
|
165 |
+
2021-06-13,9082265
|
166 |
+
2021-06-14,8796515
|
167 |
+
2021-06-15,8629607
|
168 |
+
2021-06-16,8827278
|
169 |
+
2021-06-17,8946278
|
170 |
+
2021-06-18,8390857
|
171 |
+
2021-06-19,8782778
|
172 |
+
2021-06-20,8817338
|
173 |
+
2021-06-21,8543719
|
174 |
+
2021-06-22,8590990
|
175 |
+
2021-06-23,8774391
|
176 |
+
2021-06-24,8913737
|
177 |
+
2021-06-25,8665876
|
178 |
+
2021-06-26,8707038
|
179 |
+
2021-06-27,8869334
|
180 |
+
2021-06-28,9186579
|
181 |
+
2021-06-29,8372464
|
182 |
+
2021-06-30,8721093
|
183 |
+
2021-07-01,8704509
|
184 |
+
2021-07-02,8939614
|
185 |
+
2021-07-03,9267015
|
186 |
+
2021-07-04,8544557
|
187 |
+
2021-07-05,8735065
|
188 |
+
2021-07-06,8326629
|
189 |
+
2021-07-07,8831147
|
190 |
+
2021-07-08,8857992
|
191 |
+
2021-07-09,9160117
|
192 |
+
2021-07-10,8672036
|
193 |
+
2021-07-11,8670423
|
194 |
+
2021-07-12,8869283
|
195 |
+
2021-07-13,8686309
|
196 |
+
2021-07-14,8654144
|
197 |
+
2021-07-15,8860853
|
198 |
+
2021-07-16,9198488
|
199 |
+
2021-07-17,8960260
|
200 |
+
2021-07-18,9122667
|
201 |
+
2021-07-19,9138658
|
202 |
+
2021-07-20,8987305
|
203 |
+
2021-07-21,8899455
|
204 |
+
2021-07-22,9017914
|
205 |
+
2021-07-23,8480182
|
206 |
+
2021-07-24,8603099
|
207 |
+
2021-07-25,8636410
|
208 |
+
2021-07-26,8996817
|
209 |
+
2021-07-27,9024807
|
210 |
+
2021-07-28,9329236
|
211 |
+
2021-07-29,8979426
|
212 |
+
2021-07-30,8909272
|
213 |
+
2021-07-31,8712314
|
214 |
+
2021-08-01,8861903
|
215 |
+
2021-08-02,8913143
|
216 |
+
2021-08-03,9223398
|
217 |
+
2021-08-04,9410437
|
218 |
+
2021-08-05,9212329
|
219 |
+
2021-08-06,9062121
|
220 |
+
2021-08-07,9432522
|
221 |
+
2021-08-08,9111057
|
222 |
+
2021-08-09,8971236
|
223 |
+
2021-08-10,8799249
|
224 |
+
2021-08-11,9127038
|
225 |
+
2021-08-12,9362940
|
226 |
+
2021-08-13,9077857
|
227 |
+
2021-08-14,9413465
|
228 |
+
2021-08-15,8950079
|
229 |
+
2021-08-16,9215173
|
230 |
+
2021-08-17,9056307
|
231 |
+
2021-08-18,8968187
|
232 |
+
2021-08-19,9357610
|
233 |
+
2021-08-20,8971426
|
234 |
+
2021-08-21,9238276
|
235 |
+
2021-08-22,9372279
|
236 |
+
2021-08-23,9589375
|
237 |
+
2021-08-24,8961875
|
238 |
+
2021-08-25,9160096
|
239 |
+
2021-08-26,9052229
|
240 |
+
2021-08-27,8778271
|
241 |
+
2021-08-28,9245534
|
242 |
+
2021-08-29,9384023
|
243 |
+
2021-08-30,9474742
|
244 |
+
2021-08-31,9189054
|
245 |
+
2021-09-01,9167277
|
246 |
+
2021-09-02,9123056
|
247 |
+
2021-09-03,9251321
|
248 |
+
2021-09-04,9377700
|
249 |
+
2021-09-05,9782022
|
250 |
+
2021-09-06,8930331
|
251 |
+
2021-09-07,9718666
|
252 |
+
2021-09-08,9262001
|
253 |
+
2021-09-09,9095889
|
254 |
+
2021-09-10,9364629
|
255 |
+
2021-09-11,9508131
|
256 |
+
2021-09-12,9264013
|
257 |
+
2021-09-13,9461281
|
258 |
+
2021-09-14,9032235
|
259 |
+
2021-09-15,9574777
|
260 |
+
2021-09-16,9189740
|
261 |
+
2021-09-17,9508023
|
262 |
+
2021-09-18,9580631
|
263 |
+
2021-09-19,9697272
|
264 |
+
2021-09-20,9292315
|
265 |
+
2021-09-21,9090518
|
266 |
+
2021-09-22,9294810
|
267 |
+
2021-09-23,9400956
|
268 |
+
2021-09-24,9871832
|
269 |
+
2021-09-25,9569204
|
270 |
+
2021-09-26,9583588
|
271 |
+
2021-09-27,9412385
|
272 |
+
2021-09-28,9221235
|
273 |
+
2021-09-29,9328174
|
274 |
+
2021-09-30,9192142
|
275 |
+
2021-10-01,9432155
|
276 |
+
2021-10-02,9755500
|
277 |
+
2021-10-03,9562636
|
278 |
+
2021-10-04,9497084
|
279 |
+
2021-10-05,9656472
|
280 |
+
2021-10-06,9461320
|
281 |
+
2021-10-07,9363588
|
282 |
+
2021-10-08,9834844
|
283 |
+
2021-10-09,9113802
|
284 |
+
2021-10-10,9290592
|
285 |
+
2021-10-11,9282316
|
286 |
+
2021-10-12,9725761
|
287 |
+
2021-10-13,9449353
|
288 |
+
2021-10-14,9492895
|
289 |
+
2021-10-15,9599402
|
290 |
+
2021-10-16,9664876
|
291 |
+
2021-10-17,9702569
|
292 |
+
2021-10-18,9574962
|
293 |
+
2021-10-19,9540428
|
294 |
+
2021-10-20,9617606
|
295 |
+
2021-10-21,9509561
|
296 |
+
2021-10-22,9417190
|
297 |
+
2021-10-23,9748484
|
298 |
+
2021-10-24,9476970
|
299 |
+
2021-10-25,9373507
|
300 |
+
2021-10-26,9646801
|
301 |
+
2021-10-27,9635634
|
302 |
+
2021-10-28,9530612
|
303 |
+
2021-10-29,9627467
|
304 |
+
2021-10-30,9879362
|
305 |
+
2021-10-31,9501436
|
306 |
+
2021-11-01,9631220
|
307 |
+
2021-11-02,10004975
|
308 |
+
2021-11-03,9749567
|
309 |
+
2021-11-04,9925777
|
310 |
+
2021-11-05,9863408
|
311 |
+
2021-11-06,9933505
|
312 |
+
2021-11-07,9383028
|
313 |
+
2021-11-08,9607159
|
314 |
+
2021-11-09,9707735
|
315 |
+
2021-11-10,9691895
|
316 |
+
2021-11-11,9854091
|
317 |
+
2021-11-12,9695957
|
318 |
+
2021-11-13,10047149
|
319 |
+
2021-11-14,9845653
|
320 |
+
2021-11-15,9656831
|
321 |
+
2021-11-16,10285056
|
322 |
+
2021-11-17,9606579
|
323 |
+
2021-11-18,9928425
|
324 |
+
2021-11-19,9980182
|
325 |
+
2021-11-20,9915679
|
326 |
+
2021-11-21,9837099
|
327 |
+
2021-11-22,9608834
|
328 |
+
2021-11-23,9893666
|
329 |
+
2021-11-24,9897017
|
330 |
+
2021-11-25,10129048
|
331 |
+
2021-11-26,9828852
|
332 |
+
2021-11-27,10014982
|
333 |
+
2021-11-28,10057900
|
334 |
+
2021-11-29,10204676
|
335 |
+
2021-11-30,10299217
|
336 |
+
2021-12-01,9731627
|
337 |
+
2021-12-02,9674146
|
338 |
+
2021-12-03,9679469
|
339 |
+
2021-12-04,10060861
|
340 |
+
2021-12-05,9771507
|
341 |
+
2021-12-06,9726983
|
342 |
+
2021-12-07,10152789
|
343 |
+
2021-12-08,9961637
|
344 |
+
2021-12-09,9888931
|
345 |
+
2021-12-10,10016144
|
346 |
+
2021-12-11,10025271
|
347 |
+
2021-12-12,10013123
|
348 |
+
2021-12-13,10144930
|
349 |
+
2021-12-14,10246870
|
350 |
+
2021-12-15,9838107
|
351 |
+
2021-12-16,9845904
|
352 |
+
2021-12-17,10220516
|
353 |
+
2021-12-18,9835059
|
354 |
+
2021-12-19,9572522
|
355 |
+
2021-12-20,10379305
|
356 |
+
2021-12-21,9680446
|
357 |
+
2021-12-22,10124238
|
358 |
+
2021-12-23,9464659
|
359 |
+
2021-12-24,9703857
|
360 |
+
2021-12-25,10045897
|
361 |
+
2021-12-26,10738865
|
362 |
+
2021-12-27,10350408
|
363 |
+
2021-12-28,10219445
|
364 |
+
2021-12-29,10313337
|
365 |
+
2021-12-30,10310644
|
366 |
+
2021-12-31,10211187
|
model.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
class PredictionModel:
|
6 |
+
def __init__(self, model_path, data_path):
|
7 |
+
self.model_path = model_path
|
8 |
+
self.data_path = data_path
|
9 |
+
self.load_model()
|
10 |
+
self.load_data()
|
11 |
+
|
12 |
+
def load_model(self):
|
13 |
+
with open(self.model_path, 'rb') as f:
|
14 |
+
self.model = pickle.load(f)
|
15 |
+
|
16 |
+
def load_data(self):
|
17 |
+
self.df = pd.read_csv(self.data_path)
|
18 |
+
self.df.columns = ['date', 'receipt_count']
|
19 |
+
|
20 |
+
def predict(self, period, alpha=0.05):
|
21 |
+
yhat = self.model.forecast(period)
|
22 |
+
intervals = self.compute_confidence_intervals(alpha, yhat)
|
23 |
+
return yhat, intervals
|
24 |
+
|
25 |
+
def compute_confidence_intervals(self, alpha, yhat):
|
26 |
+
residuals = self.df.receipt_count - self.model.fittedvalues
|
27 |
+
z = abs(np.percentile(np.random.standard_normal(10000), [100 * alpha/2, 100 * (1 - alpha/2)]))
|
28 |
+
std_residual = residuals.std()
|
29 |
+
interval_upper = yhat + z[1] * std_residual * np.sqrt(1 + 1/len(self.df))
|
30 |
+
interval_lower = yhat - z[1] * std_residual * np.sqrt(1 + 1/len(self.df))
|
31 |
+
return [interval_lower, interval_upper]
|
models/damped_hw_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe2517c3cb675a082dd0649e4d027ec4bb99019a2cfa4e9b1c92fa7b3292d050
|
3 |
+
size 28498
|
models/hw_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b54f6bc85ef9993b414a03a8ea140212bce994e5a044fa91425c3c04568ad229
|
3 |
+
size 28456
|