sadimanna's picture
Upload 20 files
d6def08
raw
history blame
7.56 kB
import os
import random
import xml.etree.ElementTree as ET
from typing import List, Tuple
import numpy as np
import torch.utils.data
from PIL import Image, ImageOps
from torch import Tensor
from bbox import BBox
from dataset.base import Base
from voc_eval import voc_eval
class VOC2007(Base):
class Annotation(object):
class Object(object):
def __init__(self, name: str, difficult: bool, bbox: BBox):
super().__init__()
self.name = name
self.difficult = difficult
self.bbox = bbox
def __repr__(self) -> str:
return 'Object[name={:s}, difficult={!s}, bbox={!s}]'.format(
self.name, self.difficult, self.bbox)
def __init__(self, filename: str, objects: List[Object]):
super().__init__()
self.filename = filename
self.objects = objects
CATEGORY_TO_LABEL_DICT = {
'background': 0,
'aeroplane': 1, 'bicycle': 2, 'bird': 3, 'boat': 4, 'bottle': 5,
'bus': 6, 'car': 7, 'cat': 8, 'chair': 9, 'cow': 10,
'diningtable': 11, 'dog': 12, 'horse': 13, 'motorbike': 14, 'person': 15,
'pottedplant': 16, 'sheep': 17, 'sofa': 18, 'train': 19, 'tvmonitor': 20
}
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
path_to_imagesets_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
self._path_to_jpeg_images_dir = os.path.join(path_to_voc2007_dir, 'JPEGImages')
if self._mode == VOC2007.Mode.TRAIN:
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'trainval.txt')
elif self._mode == VOC2007.Mode.EVAL:
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'test.txt')
else:
raise ValueError('invalid mode')
with open(path_to_image_ids_txt, 'r') as f:
lines = f.readlines()
self._image_ids = [line.rstrip() for line in lines]
self._image_id_to_annotation_dict = {}
self._image_ratios = []
for image_id in self._image_ids:
path_to_annotation_xml = os.path.join(path_to_annotations_dir, f'{image_id}.xml')
tree = ET.ElementTree(file=path_to_annotation_xml)
root = tree.getroot()
self._image_id_to_annotation_dict[image_id] = VOC2007.Annotation(
filename=root.find('filename').text,
objects=[VOC2007.Annotation.Object(
name=next(tag_object.iterfind('name')).text,
difficult=next(tag_object.iterfind('difficult')).text == '1',
bbox=BBox( # convert to 0-based pixel index
left=float(next(tag_object.iterfind('bndbox/xmin')).text) - 1,
top=float(next(tag_object.iterfind('bndbox/ymin')).text) - 1,
right=float(next(tag_object.iterfind('bndbox/xmax')).text) - 1,
bottom=float(next(tag_object.iterfind('bndbox/ymax')).text) - 1
)
) for tag_object in root.iterfind('object')]
)
width = int(root.find('size/width').text)
height = int(root.find('size/height').text)
ratio = float(width / height)
self._image_ratios.append(ratio)
def __len__(self) -> int:
return len(self._image_id_to_annotation_dict)
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
image_id = self._image_ids[index]
annotation = self._image_id_to_annotation_dict[image_id]
bboxes = [obj.bbox.tolist() for obj in annotation.objects if not obj.difficult]
labels = [VOC2007.CATEGORY_TO_LABEL_DICT[obj.name] for obj in annotation.objects if not obj.difficult]
bboxes = torch.tensor(bboxes, dtype=torch.float)
labels = torch.tensor(labels, dtype=torch.long)
image = Image.open(os.path.join(self._path_to_jpeg_images_dir, annotation.filename))
# random flip on only training mode
if self._mode == VOC2007.Mode.TRAIN and random.random() > 0.5:
image = ImageOps.mirror(image)
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
image, scale = VOC2007.preprocess(image, self._image_min_side, self._image_max_side)
scale = torch.tensor(scale, dtype=torch.float)
bboxes *= scale
return image_id, image, scale, bboxes, labels
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
class_to_ap_dict = {}
for c in range(1, VOC2007.num_classes()):
category = VOC2007.LABEL_TO_CATEGORY_DICT[c]
try:
path_to_cache_dir = os.path.join('caches', 'voc2007')
os.makedirs(path_to_cache_dir, exist_ok=True)
_, _, ap = voc_eval(detpath=path_to_results_dir+'/comp3_det_test_{:s}.txt'.format(category),
annopath=path_to_annotations_dir+'/{:s}.xml',
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
classname=category,
cachedir=path_to_cache_dir,
ovthresh=0.5,
use_07_metric=True)
except IndexError:
ap = 0
class_to_ap_dict[c] = ap
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
detail = ''
for c in range(1, VOC2007.num_classes()):
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
return mean_ap, detail
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
class_to_txt_files_dict = {}
for c in range(1, VOC2007.num_classes()):
class_to_txt_files_dict[c] = open(os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(VOC2007.LABEL_TO_CATEGORY_DICT[c])), 'w')
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
class_to_txt_files_dict[cls].write('{:s} {:f} {:f} {:f} {:f} {:f}\n'.format(image_id, prob,
bbox[0], bbox[1], bbox[2], bbox[3]))
for _, f in class_to_txt_files_dict.items():
f.close()
@property
def image_ratios(self) -> List[float]:
return self._image_ratios
@staticmethod
def num_classes() -> int:
return 21