File size: 7,559 Bytes
d6def08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import random
import xml.etree.ElementTree as ET
from typing import List, Tuple
import numpy as np
import torch.utils.data
from PIL import Image, ImageOps
from torch import Tensor
from bbox import BBox
from dataset.base import Base
from voc_eval import voc_eval
class VOC2007(Base):
class Annotation(object):
class Object(object):
def __init__(self, name: str, difficult: bool, bbox: BBox):
super().__init__()
self.name = name
self.difficult = difficult
self.bbox = bbox
def __repr__(self) -> str:
return 'Object[name={:s}, difficult={!s}, bbox={!s}]'.format(
self.name, self.difficult, self.bbox)
def __init__(self, filename: str, objects: List[Object]):
super().__init__()
self.filename = filename
self.objects = objects
CATEGORY_TO_LABEL_DICT = {
'background': 0,
'aeroplane': 1, 'bicycle': 2, 'bird': 3, 'boat': 4, 'bottle': 5,
'bus': 6, 'car': 7, 'cat': 8, 'chair': 9, 'cow': 10,
'diningtable': 11, 'dog': 12, 'horse': 13, 'motorbike': 14, 'person': 15,
'pottedplant': 16, 'sheep': 17, 'sofa': 18, 'train': 19, 'tvmonitor': 20
}
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
path_to_imagesets_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
self._path_to_jpeg_images_dir = os.path.join(path_to_voc2007_dir, 'JPEGImages')
if self._mode == VOC2007.Mode.TRAIN:
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'trainval.txt')
elif self._mode == VOC2007.Mode.EVAL:
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'test.txt')
else:
raise ValueError('invalid mode')
with open(path_to_image_ids_txt, 'r') as f:
lines = f.readlines()
self._image_ids = [line.rstrip() for line in lines]
self._image_id_to_annotation_dict = {}
self._image_ratios = []
for image_id in self._image_ids:
path_to_annotation_xml = os.path.join(path_to_annotations_dir, f'{image_id}.xml')
tree = ET.ElementTree(file=path_to_annotation_xml)
root = tree.getroot()
self._image_id_to_annotation_dict[image_id] = VOC2007.Annotation(
filename=root.find('filename').text,
objects=[VOC2007.Annotation.Object(
name=next(tag_object.iterfind('name')).text,
difficult=next(tag_object.iterfind('difficult')).text == '1',
bbox=BBox( # convert to 0-based pixel index
left=float(next(tag_object.iterfind('bndbox/xmin')).text) - 1,
top=float(next(tag_object.iterfind('bndbox/ymin')).text) - 1,
right=float(next(tag_object.iterfind('bndbox/xmax')).text) - 1,
bottom=float(next(tag_object.iterfind('bndbox/ymax')).text) - 1
)
) for tag_object in root.iterfind('object')]
)
width = int(root.find('size/width').text)
height = int(root.find('size/height').text)
ratio = float(width / height)
self._image_ratios.append(ratio)
def __len__(self) -> int:
return len(self._image_id_to_annotation_dict)
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
image_id = self._image_ids[index]
annotation = self._image_id_to_annotation_dict[image_id]
bboxes = [obj.bbox.tolist() for obj in annotation.objects if not obj.difficult]
labels = [VOC2007.CATEGORY_TO_LABEL_DICT[obj.name] for obj in annotation.objects if not obj.difficult]
bboxes = torch.tensor(bboxes, dtype=torch.float)
labels = torch.tensor(labels, dtype=torch.long)
image = Image.open(os.path.join(self._path_to_jpeg_images_dir, annotation.filename))
# random flip on only training mode
if self._mode == VOC2007.Mode.TRAIN and random.random() > 0.5:
image = ImageOps.mirror(image)
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
image, scale = VOC2007.preprocess(image, self._image_min_side, self._image_max_side)
scale = torch.tensor(scale, dtype=torch.float)
bboxes *= scale
return image_id, image, scale, bboxes, labels
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
class_to_ap_dict = {}
for c in range(1, VOC2007.num_classes()):
category = VOC2007.LABEL_TO_CATEGORY_DICT[c]
try:
path_to_cache_dir = os.path.join('caches', 'voc2007')
os.makedirs(path_to_cache_dir, exist_ok=True)
_, _, ap = voc_eval(detpath=path_to_results_dir+'/comp3_det_test_{:s}.txt'.format(category),
annopath=path_to_annotations_dir+'/{:s}.xml',
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
classname=category,
cachedir=path_to_cache_dir,
ovthresh=0.5,
use_07_metric=True)
except IndexError:
ap = 0
class_to_ap_dict[c] = ap
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
detail = ''
for c in range(1, VOC2007.num_classes()):
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
return mean_ap, detail
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
class_to_txt_files_dict = {}
for c in range(1, VOC2007.num_classes()):
class_to_txt_files_dict[c] = open(os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(VOC2007.LABEL_TO_CATEGORY_DICT[c])), 'w')
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
class_to_txt_files_dict[cls].write('{:s} {:f} {:f} {:f} {:f} {:f}\n'.format(image_id, prob,
bbox[0], bbox[1], bbox[2], bbox[3]))
for _, f in class_to_txt_files_dict.items():
f.close()
@property
def image_ratios(self) -> List[float]:
return self._image_ratios
@staticmethod
def num_classes() -> int:
return 21
|