File size: 7,559 Bytes
d6def08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import random
import xml.etree.ElementTree as ET
from typing import List, Tuple

import numpy as np
import torch.utils.data
from PIL import Image, ImageOps
from torch import Tensor

from bbox import BBox
from dataset.base import Base
from voc_eval import voc_eval


class VOC2007(Base):

    class Annotation(object):
        class Object(object):
            def __init__(self, name: str, difficult: bool, bbox: BBox):
                super().__init__()
                self.name = name
                self.difficult = difficult
                self.bbox = bbox

            def __repr__(self) -> str:
                return 'Object[name={:s}, difficult={!s}, bbox={!s}]'.format(
                    self.name, self.difficult, self.bbox)

        def __init__(self, filename: str, objects: List[Object]):
            super().__init__()
            self.filename = filename
            self.objects = objects

    CATEGORY_TO_LABEL_DICT = {
        'background': 0,
        'aeroplane': 1, 'bicycle': 2, 'bird': 3, 'boat': 4, 'bottle': 5,
        'bus': 6, 'car': 7, 'cat': 8, 'chair': 9, 'cow': 10,
        'diningtable': 11, 'dog': 12, 'horse': 13, 'motorbike': 14, 'person': 15,
        'pottedplant': 16, 'sheep': 17, 'sofa': 18, 'train': 19, 'tvmonitor': 20
    }

    LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}

    def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
        super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)

        path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
        path_to_imagesets_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
        path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
        self._path_to_jpeg_images_dir = os.path.join(path_to_voc2007_dir, 'JPEGImages')

        if self._mode == VOC2007.Mode.TRAIN:
            path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'trainval.txt')
        elif self._mode == VOC2007.Mode.EVAL:
            path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'test.txt')
        else:
            raise ValueError('invalid mode')

        with open(path_to_image_ids_txt, 'r') as f:
            lines = f.readlines()
            self._image_ids = [line.rstrip() for line in lines]

        self._image_id_to_annotation_dict = {}
        self._image_ratios = []

        for image_id in self._image_ids:
            path_to_annotation_xml = os.path.join(path_to_annotations_dir, f'{image_id}.xml')
            tree = ET.ElementTree(file=path_to_annotation_xml)
            root = tree.getroot()

            self._image_id_to_annotation_dict[image_id] = VOC2007.Annotation(
                filename=root.find('filename').text,
                objects=[VOC2007.Annotation.Object(
                    name=next(tag_object.iterfind('name')).text,
                    difficult=next(tag_object.iterfind('difficult')).text == '1',
                    bbox=BBox(  # convert to 0-based pixel index
                        left=float(next(tag_object.iterfind('bndbox/xmin')).text) - 1,
                        top=float(next(tag_object.iterfind('bndbox/ymin')).text) - 1,
                        right=float(next(tag_object.iterfind('bndbox/xmax')).text) - 1,
                        bottom=float(next(tag_object.iterfind('bndbox/ymax')).text) - 1
                    )
                ) for tag_object in root.iterfind('object')]
            )

            width = int(root.find('size/width').text)
            height = int(root.find('size/height').text)
            ratio = float(width / height)
            self._image_ratios.append(ratio)

    def __len__(self) -> int:
        return len(self._image_id_to_annotation_dict)

    def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
        image_id = self._image_ids[index]
        annotation = self._image_id_to_annotation_dict[image_id]

        bboxes = [obj.bbox.tolist() for obj in annotation.objects if not obj.difficult]
        labels = [VOC2007.CATEGORY_TO_LABEL_DICT[obj.name] for obj in annotation.objects if not obj.difficult]

        bboxes = torch.tensor(bboxes, dtype=torch.float)
        labels = torch.tensor(labels, dtype=torch.long)

        image = Image.open(os.path.join(self._path_to_jpeg_images_dir, annotation.filename))

        # random flip on only training mode
        if self._mode == VOC2007.Mode.TRAIN and random.random() > 0.5:
            image = ImageOps.mirror(image)
            bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]]  # index 0 and 2 represent `left` and `right` respectively

        image, scale = VOC2007.preprocess(image, self._image_min_side, self._image_max_side)
        scale = torch.tensor(scale, dtype=torch.float)
        bboxes *= scale

        return image_id, image, scale, bboxes, labels

    def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
        self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)

        path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
        path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
        path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')

        class_to_ap_dict = {}
        for c in range(1, VOC2007.num_classes()):
            category = VOC2007.LABEL_TO_CATEGORY_DICT[c]
            try:
                path_to_cache_dir = os.path.join('caches', 'voc2007')
                os.makedirs(path_to_cache_dir, exist_ok=True)
                _, _, ap = voc_eval(detpath=path_to_results_dir+'/comp3_det_test_{:s}.txt'.format(category),
                                    annopath=path_to_annotations_dir+'/{:s}.xml',
                                    imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
                                    classname=category,
                                    cachedir=path_to_cache_dir,
                                    ovthresh=0.5,
                                    use_07_metric=True)
            except IndexError:
                ap = 0

            class_to_ap_dict[c] = ap

        mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()

        detail = ''
        for c in range(1, VOC2007.num_classes()):
            detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])

        return mean_ap, detail

    def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
        class_to_txt_files_dict = {}
        for c in range(1, VOC2007.num_classes()):
            class_to_txt_files_dict[c] = open(os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(VOC2007.LABEL_TO_CATEGORY_DICT[c])), 'w')

        for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
            class_to_txt_files_dict[cls].write('{:s} {:f} {:f} {:f} {:f} {:f}\n'.format(image_id, prob,
                                                                                        bbox[0], bbox[1], bbox[2], bbox[3]))

        for _, f in class_to_txt_files_dict.items():
            f.close()

    @property
    def image_ratios(self) -> List[float]:
        return self._image_ratios

    @staticmethod
    def num_classes() -> int:
        return 21