File size: 14,011 Bytes
dfebd8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
from typing import Union, Tuple, List, Optional
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from backbone.base import Base as BackboneBase
from bbox import BBox
from extension.functional import beta_smooth_l1_loss
from roi.pooler import Pooler
from rpn.region_proposal_network import RegionProposalNetwork
#from support.layer.nms import nms
from torchvision.ops import nms
class Model(nn.Module):
def __init__(self, backbone: BackboneBase, num_classes: int, pooler_mode: Pooler.Mode,
anchor_ratios: List[Tuple[int, int]], anchor_sizes: List[int],
rpn_pre_nms_top_n: int, rpn_post_nms_top_n: int,
anchor_smooth_l1_loss_beta: Optional[float] = None, proposal_smooth_l1_loss_beta: Optional[float] = None):
super().__init__()
self.features, hidden, num_features_out, num_hidden_out = backbone.features()
self._bn_modules = nn.ModuleList([it for it in self.features.modules() if isinstance(it, nn.BatchNorm2d)] +
[it for it in hidden.modules() if isinstance(it, nn.BatchNorm2d)])
# NOTE: It's crucial to freeze batch normalization modules for few batches training, which can be done by following processes
# (1) Change mode to `eval`
# (2) Disable gradient (we move this process into `forward`)
for bn_module in self._bn_modules:
for parameter in bn_module.parameters():
parameter.requires_grad = False
self.rpn = RegionProposalNetwork(num_features_out, anchor_ratios, anchor_sizes, rpn_pre_nms_top_n, rpn_post_nms_top_n, anchor_smooth_l1_loss_beta)
self.detection = Model.Detection(pooler_mode, hidden, num_hidden_out, num_classes, proposal_smooth_l1_loss_beta)
def forward(self, image_batch: Tensor,
gt_bboxes_batch: Tensor = None, gt_classes_batch: Tensor = None) -> Union[Tuple[Tensor, Tensor, Tensor, Tensor],
Tuple[Tensor, Tensor, Tensor, Tensor]]:
# disable gradient for each forwarding process just in case model was switched to `train` mode at any time
for bn_module in self._bn_modules:
bn_module.eval()
features = self.features(image_batch)
batch_size, _, image_height, image_width = image_batch.shape
_, _, features_height, features_width = features.shape
anchor_bboxes = self.rpn.generate_anchors(image_width, image_height, num_x_anchors=features_width, num_y_anchors=features_height).to(features).repeat(batch_size, 1, 1)
if self.training:
anchor_objectnesses, anchor_transformers, anchor_objectness_losses, anchor_transformer_losses = self.rpn.forward(features, anchor_bboxes, gt_bboxes_batch, image_width, image_height)
proposal_bboxes = self.rpn.generate_proposals(anchor_bboxes, anchor_objectnesses, anchor_transformers, image_width, image_height).detach() # it's necessary to detach `proposal_bboxes` here
proposal_classes, proposal_transformers, proposal_class_losses, proposal_transformer_losses = self.detection.forward(features, proposal_bboxes, gt_classes_batch, gt_bboxes_batch)
return anchor_objectness_losses, anchor_transformer_losses, proposal_class_losses, proposal_transformer_losses
else:
anchor_objectnesses, anchor_transformers = self.rpn.forward(features)
proposal_bboxes = self.rpn.generate_proposals(anchor_bboxes, anchor_objectnesses, anchor_transformers, image_width, image_height)
proposal_classes, proposal_transformers = self.detection.forward(features, proposal_bboxes)
detection_bboxes, detection_classes, detection_probs, detection_batch_indices = self.detection.generate_detections(proposal_bboxes, proposal_classes, proposal_transformers, image_width, image_height)
return detection_bboxes, detection_classes, detection_probs, detection_batch_indices
def save(self, path_to_checkpoints_dir: str, step: int, optimizer: Optimizer, scheduler: _LRScheduler) -> str:
path_to_checkpoint = os.path.join(path_to_checkpoints_dir, f'model-{step}.pth')
checkpoint = {
'state_dict': self.state_dict(),
'step': step,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(checkpoint, path_to_checkpoint)
return path_to_checkpoint
def load(self, path_to_checkpoint: str, optimizer: Optimizer = None, scheduler: _LRScheduler = None) -> 'Model':
checkpoint = torch.load(path_to_checkpoint)
self.load_state_dict(checkpoint['state_dict'])
step = checkpoint['step']
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
return step
class Detection(nn.Module):
def __init__(self, pooler_mode: Pooler.Mode, hidden: nn.Module, num_hidden_out: int, num_classes: int, proposal_smooth_l1_loss_beta: float):
super().__init__()
self._pooler_mode = pooler_mode
self.hidden = hidden
self.num_classes = num_classes
self._proposal_class = nn.Linear(num_hidden_out, num_classes)
self._proposal_transformer = nn.Linear(num_hidden_out, num_classes * 4)
self._proposal_smooth_l1_loss_beta = proposal_smooth_l1_loss_beta
self._transformer_normalize_mean = torch.tensor([0., 0., 0., 0.], dtype=torch.float)
self._transformer_normalize_std = torch.tensor([.1, .1, .2, .2], dtype=torch.float)
def forward(self, features: Tensor, proposal_bboxes: Tensor,
gt_classes_batch: Optional[Tensor] = None, gt_bboxes_batch: Optional[Tensor] = None) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor]]:
batch_size = features.shape[0]
if not self.training:
proposal_batch_indices = torch.arange(end=batch_size, dtype=torch.long, device=proposal_bboxes.device).view(-1, 1).repeat(1, proposal_bboxes.shape[1])
pool = Pooler.apply(features, proposal_bboxes.view(-1, 4), proposal_batch_indices.view(-1), mode=self._pooler_mode)
hidden = self.hidden(pool)
hidden = F.adaptive_max_pool2d(input=hidden, output_size=1)
hidden = hidden.view(hidden.shape[0], -1)
proposal_classes = self._proposal_class(hidden)
proposal_transformers = self._proposal_transformer(hidden)
proposal_classes = proposal_classes.view(batch_size, -1, proposal_classes.shape[-1])
proposal_transformers = proposal_transformers.view(batch_size, -1, proposal_transformers.shape[-1])
return proposal_classes, proposal_transformers
else:
# find labels for each `proposal_bboxes`
labels = torch.full((batch_size, proposal_bboxes.shape[1]), -1, dtype=torch.long, device=proposal_bboxes.device)
ious = BBox.iou(proposal_bboxes, gt_bboxes_batch)
proposal_max_ious, proposal_assignments = ious.max(dim=2)
labels[proposal_max_ious < 0.5] = 0
fg_masks = proposal_max_ious >= 0.5
if len(fg_masks.nonzero()) > 0:
labels[fg_masks] = gt_classes_batch[fg_masks.nonzero()[:, 0], proposal_assignments[fg_masks]]
# select 128 x `batch_size` samples
fg_indices = (labels > 0).nonzero()
bg_indices = (labels == 0).nonzero()
fg_indices = fg_indices[torch.randperm(len(fg_indices))[:min(len(fg_indices), 32 * batch_size)]]
bg_indices = bg_indices[torch.randperm(len(bg_indices))[:128 * batch_size - len(fg_indices)]]
selected_indices = torch.cat([fg_indices, bg_indices], dim=0)
selected_indices = selected_indices[torch.randperm(len(selected_indices))].unbind(dim=1)
proposal_bboxes = proposal_bboxes[selected_indices]
gt_bboxes = gt_bboxes_batch[selected_indices[0], proposal_assignments[selected_indices]]
gt_proposal_classes = labels[selected_indices]
gt_proposal_transformers = BBox.calc_transformer(proposal_bboxes, gt_bboxes)
batch_indices = selected_indices[0]
pool = Pooler.apply(features, proposal_bboxes, proposal_batch_indices=batch_indices, mode=self._pooler_mode)
hidden = self.hidden(pool)
hidden = F.adaptive_max_pool2d(input=hidden, output_size=1)
hidden = hidden.view(hidden.shape[0], -1)
proposal_classes = self._proposal_class(hidden)
proposal_transformers = self._proposal_transformer(hidden)
proposal_class_losses, proposal_transformer_losses = self.loss(proposal_classes, proposal_transformers,
gt_proposal_classes, gt_proposal_transformers,
batch_size, batch_indices)
return proposal_classes, proposal_transformers, proposal_class_losses, proposal_transformer_losses
def loss(self, proposal_classes: Tensor, proposal_transformers: Tensor,
gt_proposal_classes: Tensor, gt_proposal_transformers: Tensor,
batch_size, batch_indices) -> Tuple[Tensor, Tensor]:
proposal_transformers = proposal_transformers.view(-1, self.num_classes, 4)[torch.arange(end=len(proposal_transformers), dtype=torch.long), gt_proposal_classes]
transformer_normalize_mean = self._transformer_normalize_mean.to(device=gt_proposal_transformers.device)
transformer_normalize_std = self._transformer_normalize_std.to(device=gt_proposal_transformers.device)
gt_proposal_transformers = (gt_proposal_transformers - transformer_normalize_mean) / transformer_normalize_std # scale up target to make regressor easier to learn
cross_entropies = torch.empty(batch_size, dtype=torch.float, device=proposal_classes.device)
smooth_l1_losses = torch.empty(batch_size, dtype=torch.float, device=proposal_transformers.device)
for batch_index in range(batch_size):
selected_indices = (batch_indices == batch_index).nonzero().view(-1)
cross_entropy = F.cross_entropy(input=proposal_classes[selected_indices],
target=gt_proposal_classes[selected_indices])
fg_indices = gt_proposal_classes[selected_indices].nonzero().view(-1)
smooth_l1_loss = beta_smooth_l1_loss(input=proposal_transformers[selected_indices][fg_indices],
target=gt_proposal_transformers[selected_indices][fg_indices],
beta=self._proposal_smooth_l1_loss_beta)
cross_entropies[batch_index] = cross_entropy
smooth_l1_losses[batch_index] = smooth_l1_loss
return cross_entropies, smooth_l1_losses
def generate_detections(self, proposal_bboxes: Tensor, proposal_classes: Tensor, proposal_transformers: Tensor, image_width: int, image_height: int) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
batch_size = proposal_bboxes.shape[0]
proposal_transformers = proposal_transformers.view(batch_size, -1, self.num_classes, 4)
transformer_normalize_std = self._transformer_normalize_std.to(device=proposal_transformers.device)
transformer_normalize_mean = self._transformer_normalize_mean.to(device=proposal_transformers.device)
proposal_transformers = proposal_transformers * transformer_normalize_std + transformer_normalize_mean
proposal_bboxes = proposal_bboxes.unsqueeze(dim=2).repeat(1, 1, self.num_classes, 1)
detection_bboxes = BBox.apply_transformer(proposal_bboxes, proposal_transformers)
detection_bboxes = BBox.clip(detection_bboxes, left=0, top=0, right=image_width, bottom=image_height)
detection_probs = F.softmax(proposal_classes, dim=-1)
all_detection_bboxes = []
all_detection_classes = []
all_detection_probs = []
all_detection_batch_indices = []
for batch_index in range(batch_size):
for c in range(1, self.num_classes):
class_bboxes = detection_bboxes[batch_index, :, c, :]
class_probs = detection_probs[batch_index, :, c]
threshold = 0.3
kept_indices = nms(class_bboxes, class_probs, threshold)
class_bboxes = class_bboxes[kept_indices]
class_probs = class_probs[kept_indices]
all_detection_bboxes.append(class_bboxes)
all_detection_classes.append(torch.full((len(kept_indices),), c, dtype=torch.int))
all_detection_probs.append(class_probs)
all_detection_batch_indices.append(torch.full((len(kept_indices),), batch_index, dtype=torch.long))
all_detection_bboxes = torch.cat(all_detection_bboxes, dim=0)
all_detection_classes = torch.cat(all_detection_classes, dim=0)
all_detection_probs = torch.cat(all_detection_probs, dim=0)
all_detection_batch_indices = torch.cat(all_detection_batch_indices, dim=0)
return all_detection_bboxes, all_detection_classes, all_detection_probs, all_detection_batch_indices
|