sadimanna commited on
Commit
dfebd8a
·
1 Parent(s): 0d3f619

Upload 16 files

Browse files
Files changed (16) hide show
  1. .gitattributes +2 -34
  2. .gitignore +9 -0
  3. LICENSE +674 -0
  4. README.md +4 -4
  5. app.py +166 -0
  6. bbox.py +92 -0
  7. eval.py +74 -0
  8. evaluator.py +46 -0
  9. infer.py +89 -0
  10. infer_stream.py +117 -0
  11. logger.py +35 -0
  12. model.py +218 -0
  13. packages.txt +1 -0
  14. requirements.txt +11 -0
  15. test_streamlit.py +170 -0
  16. voc_eval.py +198 -0
.gitattributes CHANGED
@@ -1,35 +1,3 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  *.pth filter=lfs diff=lfs merge=lfs -text
2
+ *.caffemodel filter=lfs diff=lfs merge=lfs -text
3
+ models/*.caffemodel filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
.gitignore ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ .idea/
2
+ __pycache__/
3
+
4
+ build
5
+ caches
6
+ support.egg-info
7
+ pycocotools
8
+
9
+ *.so
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Fasterrcnn Project Demo
3
- emoji: 🚀
4
  colorFrom: red
5
- colorTo: indigo
6
  sdk: streamlit
7
  sdk_version: 1.26.0
8
  app_file: app.py
@@ -10,4 +10,4 @@ pinned: false
10
  license: lgpl-3.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Fasterrcnn
3
+ emoji: 📷
4
  colorFrom: red
5
+ colorTo: purple
6
  sdk: streamlit
7
  sdk_version: 1.26.0
8
  app_file: app.py
 
10
  license: lgpl-3.0
11
  ---
12
 
13
+ # Faster RCNN Demo with Web App using Hugging Face Spaces
app.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Object detection demo with MobileNet SSD.
2
+ This model and code are based on
3
+ https://github.com/robmarkcole/object-detection-app
4
+ """
5
+
6
+ import logging
7
+ import queue
8
+ from pathlib import Path
9
+ from typing import List, NamedTuple
10
+
11
+ import av
12
+ import cv2
13
+ import numpy as np
14
+ import streamlit as st
15
+ from streamlit_webrtc import WebRtcMode, webrtc_streamer
16
+
17
+ from sample_utils.download import download_file
18
+ from sample_utils.turn import get_ice_servers
19
+
20
+ HERE = Path(__file__).parent
21
+ ROOT = HERE
22
+
23
+ logger = logging.getLogger(__name__)
24
+
25
+
26
+ MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
27
+ MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
28
+ PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
29
+ PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
30
+
31
+ CLASSES = [
32
+ "background",
33
+ "aeroplane",
34
+ "bicycle",
35
+ "bird",
36
+ "boat",
37
+ "bottle",
38
+ "bus",
39
+ "car",
40
+ "cat",
41
+ "chair",
42
+ "cow",
43
+ "diningtable",
44
+ "dog",
45
+ "horse",
46
+ "motorbike",
47
+ "person",
48
+ "pottedplant",
49
+ "sheep",
50
+ "sofa",
51
+ "train",
52
+ "tvmonitor",
53
+ ]
54
+
55
+
56
+ class Detection(NamedTuple):
57
+ class_id: int
58
+ label: str
59
+ score: float
60
+ box: np.ndarray
61
+
62
+
63
+ @st.cache_resource # type: ignore
64
+ def generate_label_colors():
65
+ return np.random.uniform(0, 255, size=(len(CLASSES), 3))
66
+
67
+
68
+ COLORS = generate_label_colors()
69
+
70
+ download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
71
+ download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
72
+
73
+
74
+ # Session-specific caching
75
+ cache_key = "object_detection_dnn"
76
+ if cache_key in st.session_state:
77
+ net = st.session_state[cache_key]
78
+ else:
79
+ net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
80
+ st.session_state[cache_key] = net
81
+
82
+ score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
83
+
84
+ # NOTE: The callback will be called in another thread,
85
+ # so use a queue here for thread-safety to pass the data
86
+ # from inside to outside the callback.
87
+ # TODO: A general-purpose shared state object may be more useful.
88
+ result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
89
+
90
+
91
+ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
92
+ image = frame.to_ndarray(format="bgr24")
93
+
94
+ # Run inference
95
+ blob = cv2.dnn.blobFromImage(
96
+ cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
97
+ )
98
+ net.setInput(blob)
99
+ output = net.forward()
100
+
101
+ h, w = image.shape[:2]
102
+
103
+ # Convert the output array into a structured form.
104
+ output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
105
+ output = output[output[:, 2] >= score_threshold]
106
+ detections = [
107
+ Detection(
108
+ class_id=int(detection[1]),
109
+ label=CLASSES[int(detection[1])],
110
+ score=float(detection[2]),
111
+ box=(detection[3:7] * np.array([w, h, w, h])),
112
+ )
113
+ for detection in output
114
+ ]
115
+
116
+ # Render bounding boxes and captions
117
+ for detection in detections:
118
+ caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
119
+ color = COLORS[detection.class_id]
120
+ xmin, ymin, xmax, ymax = detection.box.astype("int")
121
+
122
+ cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
123
+ cv2.putText(
124
+ image,
125
+ caption,
126
+ (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
127
+ cv2.FONT_HERSHEY_SIMPLEX,
128
+ 0.5,
129
+ color,
130
+ 2,
131
+ )
132
+
133
+ result_queue.put(detections)
134
+
135
+ return av.VideoFrame.from_ndarray(image, format="bgr24")
136
+
137
+
138
+ webrtc_ctx = webrtc_streamer(
139
+ key="object-detection",
140
+ mode=WebRtcMode.SENDRECV,
141
+ rtc_configuration={
142
+ "iceServers": get_ice_servers(),
143
+ "iceTransportPolicy": "relay",
144
+ },
145
+ video_frame_callback=video_frame_callback,
146
+ media_stream_constraints={"video": True, "audio": False},
147
+ async_processing=True,
148
+ )
149
+
150
+ if st.checkbox("Show the detected labels", value=True):
151
+ if webrtc_ctx.state.playing:
152
+ labels_placeholder = st.empty()
153
+ # NOTE: The video transformation with object detection and
154
+ # this loop displaying the result labels are running
155
+ # in different threads asynchronously.
156
+ # Then the rendered video frames and the labels displayed here
157
+ # are not strictly synchronized.
158
+ while True:
159
+ result = result_queue.get()
160
+ labels_placeholder.table(result)
161
+
162
+ st.markdown(
163
+ "This demo uses a model and code from "
164
+ "https://github.com/robmarkcole/object-detection-app. "
165
+ "Many thanks to the project."
166
+ )
bbox.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import torch
4
+ from torch import Tensor
5
+
6
+
7
+ class BBox(object):
8
+
9
+ def __init__(self, left: float, top: float, right: float, bottom: float):
10
+ super().__init__()
11
+ self.left = left
12
+ self.top = top
13
+ self.right = right
14
+ self.bottom = bottom
15
+
16
+ def __repr__(self) -> str:
17
+ return 'BBox[l={:.1f}, t={:.1f}, r={:.1f}, b={:.1f}]'.format(
18
+ self.left, self.top, self.right, self.bottom)
19
+
20
+ def tolist(self) -> List[float]:
21
+ return [self.left, self.top, self.right, self.bottom]
22
+
23
+ @staticmethod
24
+ def to_center_base(bboxes: Tensor) -> Tensor:
25
+ return torch.stack([
26
+ (bboxes[..., 0] + bboxes[..., 2]) / 2,
27
+ (bboxes[..., 1] + bboxes[..., 3]) / 2,
28
+ bboxes[..., 2] - bboxes[..., 0],
29
+ bboxes[..., 3] - bboxes[..., 1]
30
+ ], dim=-1)
31
+
32
+ @staticmethod
33
+ def from_center_base(center_based_bboxes: Tensor) -> Tensor:
34
+ return torch.stack([
35
+ center_based_bboxes[..., 0] - center_based_bboxes[..., 2] / 2,
36
+ center_based_bboxes[..., 1] - center_based_bboxes[..., 3] / 2,
37
+ center_based_bboxes[..., 0] + center_based_bboxes[..., 2] / 2,
38
+ center_based_bboxes[..., 1] + center_based_bboxes[..., 3] / 2
39
+ ], dim=-1)
40
+
41
+ @staticmethod
42
+ def calc_transformer(src_bboxes: Tensor, dst_bboxes: Tensor) -> Tensor:
43
+ center_based_src_bboxes = BBox.to_center_base(src_bboxes)
44
+ center_based_dst_bboxes = BBox.to_center_base(dst_bboxes)
45
+ transformers = torch.stack([
46
+ (center_based_dst_bboxes[..., 0] - center_based_src_bboxes[..., 0]) / center_based_src_bboxes[..., 2],
47
+ (center_based_dst_bboxes[..., 1] - center_based_src_bboxes[..., 1]) / center_based_src_bboxes[..., 3],
48
+ torch.log(center_based_dst_bboxes[..., 2] / center_based_src_bboxes[..., 2]),
49
+ torch.log(center_based_dst_bboxes[..., 3] / center_based_src_bboxes[..., 3])
50
+ ], dim=-1)
51
+ return transformers
52
+
53
+ @staticmethod
54
+ def apply_transformer(src_bboxes: Tensor, transformers: Tensor) -> Tensor:
55
+ center_based_src_bboxes = BBox.to_center_base(src_bboxes)
56
+ center_based_dst_bboxes = torch.stack([
57
+ transformers[..., 0] * center_based_src_bboxes[..., 2] + center_based_src_bboxes[..., 0],
58
+ transformers[..., 1] * center_based_src_bboxes[..., 3] + center_based_src_bboxes[..., 1],
59
+ torch.exp(transformers[..., 2]) * center_based_src_bboxes[..., 2],
60
+ torch.exp(transformers[..., 3]) * center_based_src_bboxes[..., 3]
61
+ ], dim=-1)
62
+ dst_bboxes = BBox.from_center_base(center_based_dst_bboxes)
63
+ return dst_bboxes
64
+
65
+ @staticmethod
66
+ def iou(source: Tensor, other: Tensor) -> Tensor:
67
+ source, other = source.unsqueeze(dim=-2).repeat(1, 1, other.shape[-2], 1), \
68
+ other.unsqueeze(dim=-3).repeat(1, source.shape[-2], 1, 1)
69
+
70
+ source_area = (source[..., 2] - source[..., 0]) * (source[..., 3] - source[..., 1])
71
+ other_area = (other[..., 2] - other[..., 0]) * (other[..., 3] - other[..., 1])
72
+
73
+ intersection_left = torch.max(source[..., 0], other[..., 0])
74
+ intersection_top = torch.max(source[..., 1], other[..., 1])
75
+ intersection_right = torch.min(source[..., 2], other[..., 2])
76
+ intersection_bottom = torch.min(source[..., 3], other[..., 3])
77
+ intersection_width = torch.clamp(intersection_right - intersection_left, min=0)
78
+ intersection_height = torch.clamp(intersection_bottom - intersection_top, min=0)
79
+ intersection_area = intersection_width * intersection_height
80
+
81
+ return intersection_area / (source_area + other_area - intersection_area)
82
+
83
+ @staticmethod
84
+ def inside(bboxes: Tensor, left: float, top: float, right: float, bottom: float) -> Tensor:
85
+ return ((bboxes[..., 0] >= left) * (bboxes[..., 1] >= top) *
86
+ (bboxes[..., 2] <= right) * (bboxes[..., 3] <= bottom))
87
+
88
+ @staticmethod
89
+ def clip(bboxes: Tensor, left: float, top: float, right: float, bottom: float) -> Tensor:
90
+ bboxes[..., [0, 2]] = bboxes[..., [0, 2]].clamp(min=left, max=right)
91
+ bboxes[..., [1, 3]] = bboxes[..., [1, 3]].clamp(min=top, max=bottom)
92
+ return bboxes
eval.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import time
4
+
5
+ import uuid
6
+
7
+ from backbone.base import Base as BackboneBase
8
+ from config.eval_config import EvalConfig as Config
9
+ from dataset.base import Base as DatasetBase
10
+ from evaluator import Evaluator
11
+ from logger import Logger as Log
12
+ from model import Model
13
+ from roi.pooler import Pooler
14
+
15
+
16
+ def _eval(path_to_checkpoint: str, dataset_name: str, backbone_name: str, path_to_data_dir: str, path_to_results_dir: str):
17
+ dataset = DatasetBase.from_name(dataset_name)(path_to_data_dir, DatasetBase.Mode.EVAL, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
18
+ evaluator = Evaluator(dataset, path_to_data_dir, path_to_results_dir)
19
+
20
+ Log.i('Found {:d} samples'.format(len(dataset)))
21
+
22
+ backbone = BackboneBase.from_name(backbone_name)(pretrained=False)
23
+ model = Model(backbone, dataset.num_classes(), pooler_mode=Config.POOLER_MODE,
24
+ anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
25
+ rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
26
+ model.load(path_to_checkpoint)
27
+
28
+ Log.i('Start evaluating with 1 GPU (1 batch per GPU)')
29
+ mean_ap, detail = evaluator.evaluate(model)
30
+ Log.i('Done')
31
+
32
+ Log.i('mean AP = {:.4f}'.format(mean_ap))
33
+ Log.i('\n' + detail)
34
+
35
+
36
+ if __name__ == '__main__':
37
+ def main():
38
+ parser = argparse.ArgumentParser()
39
+ parser.add_argument('-s', '--dataset', type=str, choices=DatasetBase.OPTIONS, required=True, help='name of dataset')
40
+ parser.add_argument('-b', '--backbone', type=str, choices=BackboneBase.OPTIONS, required=True, help='name of backbone model')
41
+ parser.add_argument('-d', '--data_dir', type=str, default='./data', help='path to data directory')
42
+ parser.add_argument('--image_min_side', type=float, help='default: {:g}'.format(Config.IMAGE_MIN_SIDE))
43
+ parser.add_argument('--image_max_side', type=float, help='default: {:g}'.format(Config.IMAGE_MAX_SIDE))
44
+ parser.add_argument('--anchor_ratios', type=str, help='default: "{!s}"'.format(Config.ANCHOR_RATIOS))
45
+ parser.add_argument('--anchor_sizes', type=str, help='default: "{!s}"'.format(Config.ANCHOR_SIZES))
46
+ parser.add_argument('--pooler_mode', type=str, choices=Pooler.OPTIONS, help='default: {.value:s}'.format(Config.POOLER_MODE))
47
+ parser.add_argument('--rpn_pre_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_PRE_NMS_TOP_N))
48
+ parser.add_argument('--rpn_post_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_POST_NMS_TOP_N))
49
+ parser.add_argument('--checkpoint', type=str, help='path to evaluating checkpoint')
50
+ args = parser.parse_args()
51
+
52
+ path_to_checkpoint = args.checkpoint
53
+ dataset_name = args.dataset
54
+ backbone_name = args.backbone
55
+ path_to_data_dir = args.data_dir
56
+
57
+ path_to_results_dir = os.path.join(os.path.dirname(path_to_checkpoint), 'results-{:s}-{:s}-{:s}'.format(
58
+ time.strftime('%Y%m%d%H%M%S'), path_to_checkpoint.split(os.path.sep)[-1].split(os.path.curdir)[0],
59
+ str(uuid.uuid4()).split('-')[0]))
60
+ os.makedirs(path_to_results_dir)
61
+
62
+ Config.setup(image_min_side=args.image_min_side, image_max_side=args.image_max_side,
63
+ anchor_ratios=args.anchor_ratios, anchor_sizes=args.anchor_sizes, pooler_mode=args.pooler_mode,
64
+ rpn_pre_nms_top_n=args.rpn_pre_nms_top_n, rpn_post_nms_top_n=args.rpn_post_nms_top_n)
65
+
66
+ Log.initialize(os.path.join(path_to_results_dir, 'eval.log'))
67
+ Log.i('Arguments:')
68
+ for k, v in vars(args).items():
69
+ Log.i(f'\t{k} = {v}')
70
+ Log.i(Config.describe())
71
+
72
+ _eval(path_to_checkpoint, dataset_name, backbone_name, path_to_data_dir, path_to_results_dir)
73
+
74
+ main()
evaluator.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ import torch
4
+ from torch.utils.data import DataLoader
5
+ from tqdm import tqdm
6
+
7
+ from dataset.base import Base as DatasetBase
8
+ from model import Model
9
+
10
+
11
+ class Evaluator(object):
12
+ def __init__(self, dataset: DatasetBase, path_to_data_dir: str, path_to_results_dir: str):
13
+ super().__init__()
14
+ self._dataset = dataset
15
+ self._dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=8, pin_memory=True)
16
+ self._path_to_data_dir = path_to_data_dir
17
+ self._path_to_results_dir = path_to_results_dir
18
+
19
+ def evaluate(self, model: Model) -> Tuple[float, str]:
20
+ all_image_ids, all_detection_bboxes, all_detection_classes, all_detection_probs = [], [], [], []
21
+
22
+ with torch.no_grad():
23
+ for _, (image_id_batch, image_batch, scale_batch, _, _) in enumerate(tqdm(self._dataloader)):
24
+ image_batch = image_batch.cuda()
25
+ assert image_batch.shape[0] == 1, 'do not use batch size more than 1 on evaluation'
26
+
27
+ detection_bboxes, detection_classes, detection_probs, detection_batch_indices = model.eval().forward(image_batch)
28
+
29
+ scale_batch = scale_batch[detection_batch_indices].unsqueeze(dim=-1).expand_as(detection_bboxes).to(device=detection_bboxes.device)
30
+ detection_bboxes = detection_bboxes / scale_batch
31
+
32
+ kept_indices = (detection_probs > 0.05).nonzero().view(-1)
33
+ detection_bboxes = detection_bboxes[kept_indices]
34
+ detection_classes = detection_classes.to(device=detection_bboxes.device)
35
+ detection_classes = detection_classes[kept_indices]
36
+ detection_probs = detection_probs[kept_indices]
37
+ detection_batch_indices = detection_batch_indices.to(device=detection_bboxes.device)
38
+ detection_batch_indices = detection_batch_indices[kept_indices]
39
+
40
+ all_detection_bboxes.extend(detection_bboxes.tolist())
41
+ all_detection_classes.extend(detection_classes.tolist())
42
+ all_detection_probs.extend(detection_probs.tolist())
43
+ all_image_ids.extend([image_id_batch[i] for i in detection_batch_indices])
44
+
45
+ mean_ap, detail = self._dataset.evaluate(self._path_to_results_dir, all_image_ids, all_detection_bboxes, all_detection_classes, all_detection_probs)
46
+ return mean_ap, detail
infer.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import random
4
+ import torch
5
+
6
+ from PIL import ImageDraw
7
+ from torchvision.transforms import transforms
8
+ from dataset.base import Base as DatasetBase
9
+ from backbone.base import Base as BackboneBase
10
+ from bbox import BBox
11
+ from model import Model
12
+ from roi.pooler import Pooler
13
+ from config.eval_config import EvalConfig as Config
14
+
15
+
16
+ def _infer(path_to_input_image: str, path_to_output_image: str, path_to_checkpoint: str, dataset_name: str, backbone_name: str, prob_thresh: float):
17
+ dataset_class = DatasetBase.from_name(dataset_name)
18
+ backbone = BackboneBase.from_name(backbone_name)(pretrained=False)
19
+ model = Model(backbone, dataset_class.num_classes(), pooler_mode=Config.POOLER_MODE,
20
+ anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
21
+ rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
22
+ model.load(path_to_checkpoint)
23
+
24
+ with torch.no_grad():
25
+ image = transforms.Image.open(path_to_input_image)
26
+ image_tensor, scale = dataset_class.preprocess(image, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
27
+
28
+ detection_bboxes, detection_classes, detection_probs, _ = \
29
+ model.eval().forward(image_tensor.unsqueeze(dim=0).cuda())
30
+ detection_bboxes /= scale
31
+
32
+ kept_indices = detection_probs > prob_thresh
33
+ detection_bboxes = detection_bboxes[kept_indices]
34
+ detection_classes = detection_classes[kept_indices]
35
+ detection_probs = detection_probs[kept_indices]
36
+
37
+ draw = ImageDraw.Draw(image)
38
+
39
+ for bbox, cls, prob in zip(detection_bboxes.tolist(), detection_classes.tolist(), detection_probs.tolist()):
40
+ color = random.choice(['red', 'green', 'blue', 'yellow', 'purple', 'white'])
41
+ bbox = BBox(left=bbox[0], top=bbox[1], right=bbox[2], bottom=bbox[3])
42
+ category = dataset_class.LABEL_TO_CATEGORY_DICT[cls]
43
+
44
+ draw.rectangle(((bbox.left, bbox.top), (bbox.right, bbox.bottom)), outline=color)
45
+ draw.text((bbox.left, bbox.top), text=f'{category:s} {prob:.3f}', fill=color)
46
+
47
+ image.save(path_to_output_image)
48
+ print(f'Output image is saved to {path_to_output_image}')
49
+
50
+
51
+ if __name__ == '__main__':
52
+ def main():
53
+ parser = argparse.ArgumentParser()
54
+ parser.add_argument('-s', '--dataset', type=str, choices=DatasetBase.OPTIONS, required=True, help='name of dataset')
55
+ parser.add_argument('-b', '--backbone', type=str, choices=BackboneBase.OPTIONS, required=True, help='name of backbone model')
56
+ parser.add_argument('-c', '--checkpoint', type=str, required=True, help='path to checkpoint')
57
+ parser.add_argument('-p', '--probability_threshold', type=float, default=0.6, help='threshold of detection probability')
58
+ parser.add_argument('--image_min_side', type=float, help='default: {:g}'.format(Config.IMAGE_MIN_SIDE))
59
+ parser.add_argument('--image_max_side', type=float, help='default: {:g}'.format(Config.IMAGE_MAX_SIDE))
60
+ parser.add_argument('--anchor_ratios', type=str, help='default: "{!s}"'.format(Config.ANCHOR_RATIOS))
61
+ parser.add_argument('--anchor_sizes', type=str, help='default: "{!s}"'.format(Config.ANCHOR_SIZES))
62
+ parser.add_argument('--pooler_mode', type=str, choices=Pooler.OPTIONS, help='default: {.value:s}'.format(Config.POOLER_MODE))
63
+ parser.add_argument('--rpn_pre_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_PRE_NMS_TOP_N))
64
+ parser.add_argument('--rpn_post_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_POST_NMS_TOP_N))
65
+ parser.add_argument('input', type=str, help='path to input image')
66
+ parser.add_argument('output', type=str, help='path to output result image')
67
+ args = parser.parse_args()
68
+
69
+ path_to_input_image = args.input
70
+ path_to_output_image = args.output
71
+ dataset_name = args.dataset
72
+ backbone_name = args.backbone
73
+ path_to_checkpoint = args.checkpoint
74
+ prob_thresh = args.probability_threshold
75
+
76
+ os.makedirs(os.path.join(os.path.curdir, os.path.dirname(path_to_output_image)), exist_ok=True)
77
+
78
+ Config.setup(image_min_side=args.image_min_side, image_max_side=args.image_max_side,
79
+ anchor_ratios=args.anchor_ratios, anchor_sizes=args.anchor_sizes, pooler_mode=args.pooler_mode,
80
+ rpn_pre_nms_top_n=args.rpn_pre_nms_top_n, rpn_post_nms_top_n=args.rpn_post_nms_top_n)
81
+
82
+ print('Arguments:')
83
+ for k, v in vars(args).items():
84
+ print(f'\t{k} = {v}')
85
+ print(Config.describe())
86
+
87
+ _infer(path_to_input_image, path_to_output_image, path_to_checkpoint, dataset_name, backbone_name, prob_thresh)
88
+
89
+ main()
infer_stream.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import itertools
3
+ import random
4
+ import time
5
+ import torch
6
+
7
+ import cv2
8
+ import numpy as np
9
+ from PIL import ImageDraw, Image
10
+
11
+ from backbone.base import Base as BackboneBase
12
+ from config.eval_config import EvalConfig as Config
13
+ from dataset.base import Base as DatasetBase
14
+ from bbox import BBox
15
+ from model import Model
16
+ from roi.pooler import Pooler
17
+
18
+
19
+ def _infer_stream(path_to_input_stream_endpoint: str, period_of_inference: int, path_to_checkpoint: str, dataset_name: str, backbone_name: str, prob_thresh: float):
20
+ dataset_class = DatasetBase.from_name(dataset_name)
21
+ backbone = BackboneBase.from_name(backbone_name)(pretrained=False)
22
+ model = Model(backbone, dataset_class.num_classes(), pooler_mode=Config.POOLER_MODE,
23
+ anchor_ratios=Config.ANCHOR_RATIOS, anchor_sizes=Config.ANCHOR_SIZES,
24
+ rpn_pre_nms_top_n=Config.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=Config.RPN_POST_NMS_TOP_N).cuda()
25
+ model.load(path_to_checkpoint)
26
+
27
+ if path_to_input_stream_endpoint.isdigit():
28
+ path_to_input_stream_endpoint = int(path_to_input_stream_endpoint)
29
+ video_capture = cv2.VideoCapture(path_to_input_stream_endpoint)
30
+
31
+ with torch.no_grad():
32
+ for sn in itertools.count(start=1):
33
+ success, frame = video_capture.read()
34
+
35
+ if not success:
36
+ break
37
+
38
+ if sn % period_of_inference != 0:
39
+ continue
40
+
41
+ timestamp = time.time()
42
+
43
+ image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
44
+ image = Image.fromarray(image)
45
+ image_tensor, scale = dataset_class.preprocess(image, Config.IMAGE_MIN_SIDE, Config.IMAGE_MAX_SIDE)
46
+
47
+ detection_bboxes, detection_classes, detection_probs, _ = \
48
+ model.eval().forward(image_tensor.unsqueeze(dim=0).cuda())
49
+ detection_bboxes /= scale
50
+
51
+ kept_indices = detection_probs > prob_thresh
52
+ detection_bboxes = detection_bboxes[kept_indices]
53
+ detection_classes = detection_classes[kept_indices]
54
+ detection_probs = detection_probs[kept_indices]
55
+
56
+ draw = ImageDraw.Draw(image)
57
+
58
+ for bbox, cls, prob in zip(detection_bboxes.tolist(), detection_classes.tolist(), detection_probs.tolist()):
59
+ color = random.choice(['red', 'green', 'blue', 'yellow', 'purple', 'white'])
60
+ bbox = BBox(left=bbox[0], top=bbox[1], right=bbox[2], bottom=bbox[3])
61
+ category = dataset_class.LABEL_TO_CATEGORY_DICT[cls]
62
+
63
+ draw.rectangle(((bbox.left, bbox.top), (bbox.right, bbox.bottom)), outline=color)
64
+ draw.text((bbox.left, bbox.top), text=f'{category:s} {prob:.3f}', fill=color)
65
+
66
+ image = np.array(image)
67
+ frame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
68
+
69
+ elapse = time.time() - timestamp
70
+ fps = 1 / elapse
71
+ cv2.putText(frame, f'FPS = {fps:.1f}', (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
72
+
73
+ cv2.imshow('easy-faster-rcnn-pytorch', frame)
74
+ if cv2.waitKey(10) == 27:
75
+ break
76
+
77
+ video_capture.release()
78
+ cv2.destroyAllWindows()
79
+
80
+
81
+ if __name__ == '__main__':
82
+ def main():
83
+ parser = argparse.ArgumentParser()
84
+ parser.add_argument('-s', '--dataset', type=str, choices=DatasetBase.OPTIONS, required=True, help='name of dataset')
85
+ parser.add_argument('-b', '--backbone', type=str, choices=BackboneBase.OPTIONS, required=True, help='name of backbone model')
86
+ parser.add_argument('-c', '--checkpoint', type=str, required=True, help='path to checkpoint')
87
+ parser.add_argument('-p', '--probability_threshold', type=float, default=0.6, help='threshold of detection probability')
88
+ parser.add_argument('--image_min_side', type=float, help='default: {:g}'.format(Config.IMAGE_MIN_SIDE))
89
+ parser.add_argument('--image_max_side', type=float, help='default: {:g}'.format(Config.IMAGE_MAX_SIDE))
90
+ parser.add_argument('--anchor_ratios', type=str, help='default: "{!s}"'.format(Config.ANCHOR_RATIOS))
91
+ parser.add_argument('--anchor_sizes', type=str, help='default: "{!s}"'.format(Config.ANCHOR_SIZES))
92
+ parser.add_argument('--pooler_mode', type=str, choices=Pooler.OPTIONS, help='default: {.value:s}'.format(Config.POOLER_MODE))
93
+ parser.add_argument('--rpn_pre_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_PRE_NMS_TOP_N))
94
+ parser.add_argument('--rpn_post_nms_top_n', type=int, help='default: {:d}'.format(Config.RPN_POST_NMS_TOP_N))
95
+ parser.add_argument('--stream_input', type=str, help='path to input stream endpoint')
96
+ parser.add_argument('--period', type=int, help='period of inference')
97
+ args = parser.parse_args()
98
+
99
+ path_to_input_stream_endpoint = args.stream_input
100
+ period_of_inference = args.period
101
+ dataset_name = args.dataset
102
+ backbone_name = args.backbone
103
+ path_to_checkpoint = args.checkpoint
104
+ prob_thresh = args.probability_threshold
105
+
106
+ Config.setup(image_min_side=args.image_min_side, image_max_side=args.image_max_side,
107
+ anchor_ratios=args.anchor_ratios, anchor_sizes=args.anchor_sizes, pooler_mode=args.pooler_mode,
108
+ rpn_pre_nms_top_n=args.rpn_pre_nms_top_n, rpn_post_nms_top_n=args.rpn_post_nms_top_n)
109
+
110
+ print('Arguments:')
111
+ for k, v in vars(args).items():
112
+ print(f'\t{k} = {v}')
113
+ print(Config.describe())
114
+
115
+ _infer_stream(path_to_input_stream_endpoint, period_of_inference, path_to_checkpoint, dataset_name, backbone_name, prob_thresh)
116
+
117
+ main()
logger.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+
4
+ class Logger(object):
5
+ Initialized = False
6
+
7
+ @staticmethod
8
+ def initialize(path_to_log_file):
9
+ logging.basicConfig(level=logging.INFO,
10
+ format='%(asctime)s %(levelname)-8s %(message)s',
11
+ datefmt='%Y-%m-%d %H:%M:%S',
12
+ handlers=[logging.FileHandler(path_to_log_file),
13
+ logging.StreamHandler()])
14
+ Logger.Initialized = True
15
+
16
+ @staticmethod
17
+ def log(level, message):
18
+ assert Logger.Initialized, 'Logger has not been initialized'
19
+ logging.log(level, message)
20
+
21
+ @staticmethod
22
+ def d(message):
23
+ Logger.log(logging.DEBUG, message)
24
+
25
+ @staticmethod
26
+ def i(message):
27
+ Logger.log(logging.INFO, message)
28
+
29
+ @staticmethod
30
+ def w(message):
31
+ Logger.log(logging.WARNING, message)
32
+
33
+ @staticmethod
34
+ def e(message):
35
+ Logger.log(logging.ERROR, message)
model.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union, Tuple, List, Optional
3
+
4
+ import torch
5
+ from torch import nn, Tensor
6
+ from torch.nn import functional as F
7
+ from torch.optim import Optimizer
8
+ from torch.optim.lr_scheduler import _LRScheduler
9
+
10
+ from backbone.base import Base as BackboneBase
11
+ from bbox import BBox
12
+ from extension.functional import beta_smooth_l1_loss
13
+ from roi.pooler import Pooler
14
+ from rpn.region_proposal_network import RegionProposalNetwork
15
+ #from support.layer.nms import nms
16
+ from torchvision.ops import nms
17
+
18
+
19
+ class Model(nn.Module):
20
+
21
+ def __init__(self, backbone: BackboneBase, num_classes: int, pooler_mode: Pooler.Mode,
22
+ anchor_ratios: List[Tuple[int, int]], anchor_sizes: List[int],
23
+ rpn_pre_nms_top_n: int, rpn_post_nms_top_n: int,
24
+ anchor_smooth_l1_loss_beta: Optional[float] = None, proposal_smooth_l1_loss_beta: Optional[float] = None):
25
+ super().__init__()
26
+
27
+ self.features, hidden, num_features_out, num_hidden_out = backbone.features()
28
+ self._bn_modules = nn.ModuleList([it for it in self.features.modules() if isinstance(it, nn.BatchNorm2d)] +
29
+ [it for it in hidden.modules() if isinstance(it, nn.BatchNorm2d)])
30
+
31
+ # NOTE: It's crucial to freeze batch normalization modules for few batches training, which can be done by following processes
32
+ # (1) Change mode to `eval`
33
+ # (2) Disable gradient (we move this process into `forward`)
34
+ for bn_module in self._bn_modules:
35
+ for parameter in bn_module.parameters():
36
+ parameter.requires_grad = False
37
+
38
+ self.rpn = RegionProposalNetwork(num_features_out, anchor_ratios, anchor_sizes, rpn_pre_nms_top_n, rpn_post_nms_top_n, anchor_smooth_l1_loss_beta)
39
+ self.detection = Model.Detection(pooler_mode, hidden, num_hidden_out, num_classes, proposal_smooth_l1_loss_beta)
40
+
41
+ def forward(self, image_batch: Tensor,
42
+ gt_bboxes_batch: Tensor = None, gt_classes_batch: Tensor = None) -> Union[Tuple[Tensor, Tensor, Tensor, Tensor],
43
+ Tuple[Tensor, Tensor, Tensor, Tensor]]:
44
+ # disable gradient for each forwarding process just in case model was switched to `train` mode at any time
45
+ for bn_module in self._bn_modules:
46
+ bn_module.eval()
47
+
48
+ features = self.features(image_batch)
49
+
50
+ batch_size, _, image_height, image_width = image_batch.shape
51
+ _, _, features_height, features_width = features.shape
52
+
53
+ anchor_bboxes = self.rpn.generate_anchors(image_width, image_height, num_x_anchors=features_width, num_y_anchors=features_height).to(features).repeat(batch_size, 1, 1)
54
+
55
+ if self.training:
56
+ anchor_objectnesses, anchor_transformers, anchor_objectness_losses, anchor_transformer_losses = self.rpn.forward(features, anchor_bboxes, gt_bboxes_batch, image_width, image_height)
57
+ proposal_bboxes = self.rpn.generate_proposals(anchor_bboxes, anchor_objectnesses, anchor_transformers, image_width, image_height).detach() # it's necessary to detach `proposal_bboxes` here
58
+ proposal_classes, proposal_transformers, proposal_class_losses, proposal_transformer_losses = self.detection.forward(features, proposal_bboxes, gt_classes_batch, gt_bboxes_batch)
59
+ return anchor_objectness_losses, anchor_transformer_losses, proposal_class_losses, proposal_transformer_losses
60
+ else:
61
+ anchor_objectnesses, anchor_transformers = self.rpn.forward(features)
62
+ proposal_bboxes = self.rpn.generate_proposals(anchor_bboxes, anchor_objectnesses, anchor_transformers, image_width, image_height)
63
+ proposal_classes, proposal_transformers = self.detection.forward(features, proposal_bboxes)
64
+ detection_bboxes, detection_classes, detection_probs, detection_batch_indices = self.detection.generate_detections(proposal_bboxes, proposal_classes, proposal_transformers, image_width, image_height)
65
+ return detection_bboxes, detection_classes, detection_probs, detection_batch_indices
66
+
67
+ def save(self, path_to_checkpoints_dir: str, step: int, optimizer: Optimizer, scheduler: _LRScheduler) -> str:
68
+ path_to_checkpoint = os.path.join(path_to_checkpoints_dir, f'model-{step}.pth')
69
+ checkpoint = {
70
+ 'state_dict': self.state_dict(),
71
+ 'step': step,
72
+ 'optimizer_state_dict': optimizer.state_dict(),
73
+ 'scheduler_state_dict': scheduler.state_dict()
74
+ }
75
+ torch.save(checkpoint, path_to_checkpoint)
76
+ return path_to_checkpoint
77
+
78
+ def load(self, path_to_checkpoint: str, optimizer: Optimizer = None, scheduler: _LRScheduler = None) -> 'Model':
79
+ checkpoint = torch.load(path_to_checkpoint)
80
+ self.load_state_dict(checkpoint['state_dict'])
81
+ step = checkpoint['step']
82
+ if optimizer is not None:
83
+ optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
84
+ if scheduler is not None:
85
+ scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
86
+ return step
87
+
88
+ class Detection(nn.Module):
89
+
90
+ def __init__(self, pooler_mode: Pooler.Mode, hidden: nn.Module, num_hidden_out: int, num_classes: int, proposal_smooth_l1_loss_beta: float):
91
+ super().__init__()
92
+ self._pooler_mode = pooler_mode
93
+ self.hidden = hidden
94
+ self.num_classes = num_classes
95
+ self._proposal_class = nn.Linear(num_hidden_out, num_classes)
96
+ self._proposal_transformer = nn.Linear(num_hidden_out, num_classes * 4)
97
+ self._proposal_smooth_l1_loss_beta = proposal_smooth_l1_loss_beta
98
+ self._transformer_normalize_mean = torch.tensor([0., 0., 0., 0.], dtype=torch.float)
99
+ self._transformer_normalize_std = torch.tensor([.1, .1, .2, .2], dtype=torch.float)
100
+
101
+ def forward(self, features: Tensor, proposal_bboxes: Tensor,
102
+ gt_classes_batch: Optional[Tensor] = None, gt_bboxes_batch: Optional[Tensor] = None) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor]]:
103
+ batch_size = features.shape[0]
104
+
105
+ if not self.training:
106
+ proposal_batch_indices = torch.arange(end=batch_size, dtype=torch.long, device=proposal_bboxes.device).view(-1, 1).repeat(1, proposal_bboxes.shape[1])
107
+ pool = Pooler.apply(features, proposal_bboxes.view(-1, 4), proposal_batch_indices.view(-1), mode=self._pooler_mode)
108
+ hidden = self.hidden(pool)
109
+ hidden = F.adaptive_max_pool2d(input=hidden, output_size=1)
110
+ hidden = hidden.view(hidden.shape[0], -1)
111
+
112
+ proposal_classes = self._proposal_class(hidden)
113
+ proposal_transformers = self._proposal_transformer(hidden)
114
+
115
+ proposal_classes = proposal_classes.view(batch_size, -1, proposal_classes.shape[-1])
116
+ proposal_transformers = proposal_transformers.view(batch_size, -1, proposal_transformers.shape[-1])
117
+ return proposal_classes, proposal_transformers
118
+ else:
119
+ # find labels for each `proposal_bboxes`
120
+ labels = torch.full((batch_size, proposal_bboxes.shape[1]), -1, dtype=torch.long, device=proposal_bboxes.device)
121
+ ious = BBox.iou(proposal_bboxes, gt_bboxes_batch)
122
+ proposal_max_ious, proposal_assignments = ious.max(dim=2)
123
+ labels[proposal_max_ious < 0.5] = 0
124
+ fg_masks = proposal_max_ious >= 0.5
125
+ if len(fg_masks.nonzero()) > 0:
126
+ labels[fg_masks] = gt_classes_batch[fg_masks.nonzero()[:, 0], proposal_assignments[fg_masks]]
127
+
128
+ # select 128 x `batch_size` samples
129
+ fg_indices = (labels > 0).nonzero()
130
+ bg_indices = (labels == 0).nonzero()
131
+ fg_indices = fg_indices[torch.randperm(len(fg_indices))[:min(len(fg_indices), 32 * batch_size)]]
132
+ bg_indices = bg_indices[torch.randperm(len(bg_indices))[:128 * batch_size - len(fg_indices)]]
133
+ selected_indices = torch.cat([fg_indices, bg_indices], dim=0)
134
+ selected_indices = selected_indices[torch.randperm(len(selected_indices))].unbind(dim=1)
135
+
136
+ proposal_bboxes = proposal_bboxes[selected_indices]
137
+ gt_bboxes = gt_bboxes_batch[selected_indices[0], proposal_assignments[selected_indices]]
138
+ gt_proposal_classes = labels[selected_indices]
139
+ gt_proposal_transformers = BBox.calc_transformer(proposal_bboxes, gt_bboxes)
140
+ batch_indices = selected_indices[0]
141
+
142
+ pool = Pooler.apply(features, proposal_bboxes, proposal_batch_indices=batch_indices, mode=self._pooler_mode)
143
+ hidden = self.hidden(pool)
144
+ hidden = F.adaptive_max_pool2d(input=hidden, output_size=1)
145
+ hidden = hidden.view(hidden.shape[0], -1)
146
+
147
+ proposal_classes = self._proposal_class(hidden)
148
+ proposal_transformers = self._proposal_transformer(hidden)
149
+ proposal_class_losses, proposal_transformer_losses = self.loss(proposal_classes, proposal_transformers,
150
+ gt_proposal_classes, gt_proposal_transformers,
151
+ batch_size, batch_indices)
152
+
153
+ return proposal_classes, proposal_transformers, proposal_class_losses, proposal_transformer_losses
154
+
155
+ def loss(self, proposal_classes: Tensor, proposal_transformers: Tensor,
156
+ gt_proposal_classes: Tensor, gt_proposal_transformers: Tensor,
157
+ batch_size, batch_indices) -> Tuple[Tensor, Tensor]:
158
+ proposal_transformers = proposal_transformers.view(-1, self.num_classes, 4)[torch.arange(end=len(proposal_transformers), dtype=torch.long), gt_proposal_classes]
159
+ transformer_normalize_mean = self._transformer_normalize_mean.to(device=gt_proposal_transformers.device)
160
+ transformer_normalize_std = self._transformer_normalize_std.to(device=gt_proposal_transformers.device)
161
+ gt_proposal_transformers = (gt_proposal_transformers - transformer_normalize_mean) / transformer_normalize_std # scale up target to make regressor easier to learn
162
+
163
+ cross_entropies = torch.empty(batch_size, dtype=torch.float, device=proposal_classes.device)
164
+ smooth_l1_losses = torch.empty(batch_size, dtype=torch.float, device=proposal_transformers.device)
165
+
166
+ for batch_index in range(batch_size):
167
+ selected_indices = (batch_indices == batch_index).nonzero().view(-1)
168
+
169
+ cross_entropy = F.cross_entropy(input=proposal_classes[selected_indices],
170
+ target=gt_proposal_classes[selected_indices])
171
+
172
+ fg_indices = gt_proposal_classes[selected_indices].nonzero().view(-1)
173
+ smooth_l1_loss = beta_smooth_l1_loss(input=proposal_transformers[selected_indices][fg_indices],
174
+ target=gt_proposal_transformers[selected_indices][fg_indices],
175
+ beta=self._proposal_smooth_l1_loss_beta)
176
+
177
+ cross_entropies[batch_index] = cross_entropy
178
+ smooth_l1_losses[batch_index] = smooth_l1_loss
179
+
180
+ return cross_entropies, smooth_l1_losses
181
+
182
+ def generate_detections(self, proposal_bboxes: Tensor, proposal_classes: Tensor, proposal_transformers: Tensor, image_width: int, image_height: int) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
183
+ batch_size = proposal_bboxes.shape[0]
184
+
185
+ proposal_transformers = proposal_transformers.view(batch_size, -1, self.num_classes, 4)
186
+ transformer_normalize_std = self._transformer_normalize_std.to(device=proposal_transformers.device)
187
+ transformer_normalize_mean = self._transformer_normalize_mean.to(device=proposal_transformers.device)
188
+ proposal_transformers = proposal_transformers * transformer_normalize_std + transformer_normalize_mean
189
+
190
+ proposal_bboxes = proposal_bboxes.unsqueeze(dim=2).repeat(1, 1, self.num_classes, 1)
191
+ detection_bboxes = BBox.apply_transformer(proposal_bboxes, proposal_transformers)
192
+ detection_bboxes = BBox.clip(detection_bboxes, left=0, top=0, right=image_width, bottom=image_height)
193
+ detection_probs = F.softmax(proposal_classes, dim=-1)
194
+
195
+ all_detection_bboxes = []
196
+ all_detection_classes = []
197
+ all_detection_probs = []
198
+ all_detection_batch_indices = []
199
+
200
+ for batch_index in range(batch_size):
201
+ for c in range(1, self.num_classes):
202
+ class_bboxes = detection_bboxes[batch_index, :, c, :]
203
+ class_probs = detection_probs[batch_index, :, c]
204
+ threshold = 0.3
205
+ kept_indices = nms(class_bboxes, class_probs, threshold)
206
+ class_bboxes = class_bboxes[kept_indices]
207
+ class_probs = class_probs[kept_indices]
208
+
209
+ all_detection_bboxes.append(class_bboxes)
210
+ all_detection_classes.append(torch.full((len(kept_indices),), c, dtype=torch.int))
211
+ all_detection_probs.append(class_probs)
212
+ all_detection_batch_indices.append(torch.full((len(kept_indices),), batch_index, dtype=torch.long))
213
+
214
+ all_detection_bboxes = torch.cat(all_detection_bboxes, dim=0)
215
+ all_detection_classes = torch.cat(all_detection_classes, dim=0)
216
+ all_detection_probs = torch.cat(all_detection_probs, dim=0)
217
+ all_detection_batch_indices = torch.cat(all_detection_batch_indices, dim=0)
218
+ return all_detection_bboxes, all_detection_classes, all_detection_probs, all_detection_batch_indices
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ffmpeg
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ tqdm
2
+ numpy
3
+ torch
4
+ torchvision
5
+ Pillow
6
+ opencv-python-headless==4.8.0.76
7
+ streamlit_webrtc==0.47.0
8
+ pyOpenSSL==23.1.0
9
+ pydub==0.25.1
10
+ twilio~=8.5.0
11
+ matplotlib
test_streamlit.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Object detection demo with MobileNet SSD.
2
+ This model and code are based on
3
+ https://github.com/robmarkcole/object-detection-app
4
+ """
5
+
6
+ import logging
7
+ import queue
8
+ from pathlib import Path
9
+ from typing import List, NamedTuple
10
+
11
+ import av
12
+ import cv2
13
+ import numpy as np
14
+ import streamlit as st
15
+ from streamlit_webrtc import WebRtcMode, webrtc_streamer
16
+
17
+ from sample_utils.download import download_file
18
+ from sample_utils.turn import get_ice_servers
19
+
20
+ HERE = Path(__file__).parent
21
+ ROOT = HERE
22
+
23
+ logger = logging.getLogger(__name__)
24
+
25
+
26
+ MODEL_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.caffemodel" # noqa: E501
27
+ MODEL_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.caffemodel"
28
+ PROTOTXT_URL = "https://github.com/robmarkcole/object-detection-app/raw/master/model/MobileNetSSD_deploy.prototxt.txt" # noqa: E501
29
+ PROTOTXT_LOCAL_PATH = ROOT / "./models/MobileNetSSD_deploy.prototxt.txt"
30
+
31
+ CLASSES = [
32
+ "background",
33
+ "aeroplane",
34
+ "bicycle",
35
+ "bird",
36
+ "boat",
37
+ "bottle",
38
+ "bus",
39
+ "car",
40
+ "cat",
41
+ "chair",
42
+ "cow",
43
+ "diningtable",
44
+ "dog",
45
+ "horse",
46
+ "motorbike",
47
+ "person",
48
+ "pottedplant",
49
+ "sheep",
50
+ "sofa",
51
+ "train",
52
+ "tvmonitor",
53
+ ]
54
+
55
+
56
+ class Detection(NamedTuple):
57
+ class_id: int
58
+ label: str
59
+ score: float
60
+ box: np.ndarray
61
+
62
+
63
+ @st.cache_resource # type: ignore
64
+ def generate_label_colors():
65
+ return np.random.uniform(0, 255, size=(len(CLASSES), 3))
66
+
67
+
68
+ COLORS = generate_label_colors()
69
+
70
+ download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
71
+ download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
72
+
73
+
74
+ # Session-specific caching
75
+ cache_key = "object_detection_dnn"
76
+ if cache_key in st.session_state:
77
+ net = st.session_state[cache_key]
78
+ net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
79
+ net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
80
+ else:
81
+ net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
82
+ net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
83
+ net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
84
+ st.session_state[cache_key] = net
85
+
86
+ score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
87
+
88
+ # NOTE: The callback will be called in another thread,
89
+ # so use a queue here for thread-safety to pass the data
90
+ # from inside to outside the callback.
91
+ # TODO: A general-purpose shared state object may be more useful.
92
+ result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
93
+
94
+
95
+ def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
96
+ image = frame.to_ndarray(format="bgr24")
97
+
98
+ # Run inference
99
+ blob = cv2.dnn.blobFromImage(
100
+ cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
101
+ )
102
+ net.setInput(blob)
103
+ output = net.forward()
104
+
105
+ h, w = image.shape[:2]
106
+
107
+ # Convert the output array into a structured form.
108
+ output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
109
+ output = output[output[:, 2] >= score_threshold]
110
+ detections = [
111
+ Detection(
112
+ class_id=int(detection[1]),
113
+ label=CLASSES[int(detection[1])],
114
+ score=float(detection[2]),
115
+ box=(detection[3:7] * np.array([w, h, w, h])),
116
+ )
117
+ for detection in output
118
+ ]
119
+
120
+ # Render bounding boxes and captions
121
+ for detection in detections:
122
+ caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
123
+ color = COLORS[detection.class_id]
124
+ xmin, ymin, xmax, ymax = detection.box.astype("int")
125
+
126
+ cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
127
+ cv2.putText(
128
+ image,
129
+ caption,
130
+ (xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
131
+ cv2.FONT_HERSHEY_SIMPLEX,
132
+ 0.5,
133
+ color,
134
+ 2,
135
+ )
136
+
137
+ result_queue.put(detections)
138
+
139
+ return av.VideoFrame.from_ndarray(image, format="bgr24")
140
+
141
+
142
+ webrtc_ctx = webrtc_streamer(
143
+ key="object-detection",
144
+ mode=WebRtcMode.SENDRECV,
145
+ rtc_configuration={
146
+ "iceServers": get_ice_servers(),
147
+ "iceTransportPolicy": "relay",
148
+ },
149
+ video_frame_callback=video_frame_callback,
150
+ media_stream_constraints={"video": True, "audio": False},
151
+ async_processing=True,
152
+ )
153
+
154
+ if st.checkbox("Show the detected labels", value=True):
155
+ if webrtc_ctx.state.playing:
156
+ labels_placeholder = st.empty()
157
+ # NOTE: The video transformation with object detection and
158
+ # this loop displaying the result labels are running
159
+ # in different threads asynchronously.
160
+ # Then the rendered video frames and the labels displayed here
161
+ # are not strictly synchronized.
162
+ while True:
163
+ result = result_queue.get()
164
+ labels_placeholder.table(result)
165
+
166
+ st.markdown(
167
+ "This demo uses a model and code from "
168
+ "https://github.com/robmarkcole/object-detection-app. "
169
+ "Many thanks to the project."
170
+ )
voc_eval.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Fast/er R-CNN
3
+ # Licensed under The MIT License [see LICENSE for details]
4
+ # Written by Bharath Hariharan
5
+ # --------------------------------------------------------
6
+
7
+ import xml.etree.ElementTree as ET
8
+ import os
9
+ import _pickle as cPickle
10
+ import numpy as np
11
+
12
+ def parse_rec(filename):
13
+ """ Parse a PASCAL VOC xml file """
14
+ tree = ET.parse(filename)
15
+ objects = []
16
+ for obj in tree.findall('object'):
17
+ obj_struct = {}
18
+ obj_struct['name'] = obj.find('name').text
19
+ obj_struct['pose'] = obj.find('pose').text
20
+ obj_struct['truncated'] = int(obj.find('truncated').text)
21
+ obj_struct['difficult'] = int(obj.find('difficult').text)
22
+ bbox = obj.find('bndbox')
23
+ obj_struct['bbox'] = [int(bbox.find('xmin').text),
24
+ int(bbox.find('ymin').text),
25
+ int(bbox.find('xmax').text),
26
+ int(bbox.find('ymax').text)]
27
+ objects.append(obj_struct)
28
+
29
+ return objects
30
+
31
+ def voc_ap(rec, prec, use_07_metric=False):
32
+ """ ap = voc_ap(rec, prec, [use_07_metric])
33
+ Compute VOC AP given precision and recall.
34
+ If use_07_metric is true, uses the
35
+ VOC 07 11 point method (default:False).
36
+ """
37
+ if use_07_metric:
38
+ # 11 point metric
39
+ ap = 0.
40
+ for t in np.arange(0., 1.1, 0.1):
41
+ if np.sum(rec >= t) == 0:
42
+ p = 0
43
+ else:
44
+ p = np.max(prec[rec >= t])
45
+ ap = ap + p / 11.
46
+ else:
47
+ # correct AP calculation
48
+ # first append sentinel values at the end
49
+ mrec = np.concatenate(([0.], rec, [1.]))
50
+ mpre = np.concatenate(([0.], prec, [0.]))
51
+
52
+ # compute the precision envelope
53
+ for i in range(mpre.size - 1, 0, -1):
54
+ mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
55
+
56
+ # to calculate area under PR curve, look for points
57
+ # where X axis (recall) changes value
58
+ i = np.where(mrec[1:] != mrec[:-1])[0]
59
+
60
+ # and sum (\Delta recall) * prec
61
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
62
+ return ap
63
+
64
+ def voc_eval(detpath,
65
+ annopath,
66
+ imagesetfile,
67
+ classname,
68
+ cachedir,
69
+ ovthresh=0.5,
70
+ use_07_metric=False):
71
+ """rec, prec, ap = voc_eval(detpath,
72
+ annopath,
73
+ imagesetfile,
74
+ classname,
75
+ [ovthresh],
76
+ [use_07_metric])
77
+ Top level function that does the PASCAL VOC evaluation.
78
+ detpath: Path to detections
79
+ detpath.format(classname) should produce the detection results file.
80
+ annopath: Path to annotations
81
+ annopath.format(imagename) should be the xml annotations file.
82
+ imagesetfile: Text file containing the list of images, one image per line.
83
+ classname: Category name (duh)
84
+ cachedir: Directory for caching the annotations
85
+ [ovthresh]: Overlap threshold (default = 0.5)
86
+ [use_07_metric]: Whether to use VOC07's 11 point AP computation
87
+ (default False)
88
+ """
89
+ # assumes detections are in detpath.format(classname)
90
+ # assumes annotations are in annopath.format(imagename)
91
+ # assumes imagesetfile is a text file with each line an image name
92
+ # cachedir caches the annotations in a pickle file
93
+
94
+ # first load gt
95
+ if not os.path.isdir(cachedir):
96
+ os.mkdir(cachedir)
97
+ cachefile = os.path.join(cachedir, 'annots.pkl')
98
+ # read list of images
99
+ with open(imagesetfile, 'r') as f:
100
+ lines = f.readlines()
101
+ imagenames = [x.strip() for x in lines]
102
+
103
+ if not os.path.isfile(cachefile):
104
+ # load annots
105
+ recs = {}
106
+ for i, imagename in enumerate(imagenames):
107
+ recs[imagename] = parse_rec(annopath.format(imagename))
108
+ if i % 100 == 0:
109
+ print('Reading annotation for {:d}/{:d}'.format(
110
+ i + 1, len(imagenames)))
111
+ # save
112
+ print('Saving cached annotations to {:s}'.format(cachefile))
113
+ with open(cachefile, 'wb') as f:
114
+ cPickle.dump(recs, f)
115
+ else:
116
+ # load
117
+ with open(cachefile, 'rb') as f:
118
+ recs = cPickle.load(f)
119
+
120
+ # extract gt objects for this class
121
+ class_recs = {}
122
+ npos = 0
123
+ for imagename in imagenames:
124
+ R = [obj for obj in recs[imagename] if obj['name'] == classname]
125
+ bbox = np.array([x['bbox'] for x in R])
126
+ difficult = np.array([x['difficult'] for x in R]).astype(np.bool_)
127
+ det = [False] * len(R)
128
+ npos = npos + sum(~difficult)
129
+ class_recs[imagename] = {'bbox': bbox,
130
+ 'difficult': difficult,
131
+ 'det': det}
132
+
133
+ # read dets
134
+ detfile = detpath.format(classname)
135
+ with open(detfile, 'r') as f:
136
+ lines = f.readlines()
137
+
138
+ splitlines = [x.strip().split(' ') for x in lines]
139
+ image_ids = [x[0] for x in splitlines]
140
+ confidence = np.array([float(x[1]) for x in splitlines])
141
+ BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
142
+
143
+ # sort by confidence
144
+ sorted_ind = np.argsort(-confidence)
145
+ sorted_scores = np.sort(-confidence)
146
+ BB = BB[sorted_ind, :]
147
+ image_ids = [image_ids[x] for x in sorted_ind]
148
+
149
+ # go down dets and mark TPs and FPs
150
+ nd = len(image_ids)
151
+ tp = np.zeros(nd)
152
+ fp = np.zeros(nd)
153
+ for d in range(nd):
154
+ R = class_recs[image_ids[d]]
155
+ bb = BB[d, :].astype(float)
156
+ ovmax = -np.inf
157
+ BBGT = R['bbox'].astype(float)
158
+
159
+ if BBGT.size > 0:
160
+ # compute overlaps
161
+ # intersection
162
+ ixmin = np.maximum(BBGT[:, 0], bb[0])
163
+ iymin = np.maximum(BBGT[:, 1], bb[1])
164
+ ixmax = np.minimum(BBGT[:, 2], bb[2])
165
+ iymax = np.minimum(BBGT[:, 3], bb[3])
166
+ iw = np.maximum(ixmax - ixmin + 1., 0.)
167
+ ih = np.maximum(iymax - iymin + 1., 0.)
168
+ inters = iw * ih
169
+
170
+ # union
171
+ uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
172
+ (BBGT[:, 2] - BBGT[:, 0] + 1.) *
173
+ (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
174
+
175
+ overlaps = inters / uni
176
+ ovmax = np.max(overlaps)
177
+ jmax = np.argmax(overlaps)
178
+
179
+ if ovmax > ovthresh:
180
+ if not R['difficult'][jmax]:
181
+ if not R['det'][jmax]:
182
+ tp[d] = 1.
183
+ R['det'][jmax] = 1
184
+ else:
185
+ fp[d] = 1.
186
+ else:
187
+ fp[d] = 1.
188
+
189
+ # compute precision recall
190
+ fp = np.cumsum(fp)
191
+ tp = np.cumsum(tp)
192
+ rec = tp / float(npos)
193
+ # avoid divide by zero in case the first detection matches a difficult
194
+ # ground truth
195
+ prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
196
+ ap = voc_ap(rec, prec, use_07_metric)
197
+
198
+ return rec, prec, ap