Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,54 +47,46 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 47 |
# Load the model and tokenizer
|
| 48 |
@st.cache_resource
|
| 49 |
def load_model_and_tokenizer():
|
| 50 |
-
model_name = "microsoft/DialoGPT-medium" #
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 52 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 53 |
return tokenizer, model
|
| 54 |
|
| 55 |
tokenizer, model = load_model_and_tokenizer()
|
| 56 |
|
| 57 |
-
# Streamlit App
|
| 58 |
-
st.title("General Chatbot")
|
| 59 |
-
st.
|
| 60 |
|
| 61 |
-
# Initialize the
|
| 62 |
-
if "
|
| 63 |
-
st.session_state["
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
user_input = st.text_input("You:", placeholder="
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
st.session_state["chat_history"] += f"User: {user_input}\n"
|
| 71 |
-
|
| 72 |
-
# Tokenize the input with conversation history
|
| 73 |
-
input_ids = tokenizer.encode(st.session_state["chat_history"], return_tensors="pt")
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
chat_history_ids = model.generate(
|
| 77 |
-
input_ids,
|
| 78 |
-
max_length=
|
| 79 |
-
min_length=200, # Ensure responses are not too short
|
| 80 |
-
temperature=1.0, # Adjust for creativity
|
| 81 |
-
top_p=0.9, # Nucleus sampling for focused responses
|
| 82 |
-
repetition_penalty=1.2, # Penalize repeated phrases
|
| 83 |
pad_token_id=tokenizer.eos_token_id
|
| 84 |
)
|
| 85 |
-
|
| 86 |
-
# Decode the model's response
|
| 87 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
st.session_state["
|
| 91 |
-
|
| 92 |
-
# Display the conversation
|
| 93 |
-
st.markdown(f"**You:** {user_input}")
|
| 94 |
-
st.markdown(f"**Bot:** {response}")
|
| 95 |
-
|
| 96 |
-
# Display Full Conversation History
|
| 97 |
-
st.divider()
|
| 98 |
-
st.subheader("Conversation History:")
|
| 99 |
-
st.text(st.session_state["chat_history"])
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Load the model and tokenizer
|
| 48 |
@st.cache_resource
|
| 49 |
def load_model_and_tokenizer():
|
| 50 |
+
model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 52 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 53 |
return tokenizer, model
|
| 54 |
|
| 55 |
tokenizer, model = load_model_and_tokenizer()
|
| 56 |
|
| 57 |
+
# Streamlit App
|
| 58 |
+
st.title("General Chatbot with Adjustable Answer Length")
|
| 59 |
+
st.write("A chatbot powered by an open-source model from Hugging Face.")
|
| 60 |
|
| 61 |
+
# Initialize the conversation
|
| 62 |
+
if "conversation_history" not in st.session_state:
|
| 63 |
+
st.session_state["conversation_history"] = []
|
| 64 |
|
| 65 |
+
# Input for user query
|
| 66 |
+
user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
|
| 67 |
|
| 68 |
+
# Slider for setting max response length
|
| 69 |
+
max_length = st.slider("Set the maximum response length:", min_value=50, max_value=500, step=50, value=150)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
if st.button("Send") and user_input:
|
| 72 |
+
# Append user input to history
|
| 73 |
+
st.session_state["conversation_history"].append({"role": "user", "content": user_input})
|
| 74 |
+
|
| 75 |
+
# Tokenize and generate response
|
| 76 |
+
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
| 77 |
chat_history_ids = model.generate(
|
| 78 |
+
input_ids,
|
| 79 |
+
max_length=max_length, # Use the user-specified max length
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
pad_token_id=tokenizer.eos_token_id
|
| 81 |
)
|
|
|
|
|
|
|
| 82 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
| 83 |
|
| 84 |
+
# Append model response to history
|
| 85 |
+
st.session_state["conversation_history"].append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# Display the conversation
|
| 88 |
+
for message in st.session_state["conversation_history"]:
|
| 89 |
+
if message["role"] == "user":
|
| 90 |
+
st.write(f"**You:** {message['content']}")
|
| 91 |
+
else:
|
| 92 |
+
st.write(f"**Bot:** {message['content']}")
|