Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Load the model and tokenizer
|
5 |
@st.cache_resource
|
6 |
def load_model_and_tokenizer():
|
7 |
-
model_name = "microsoft/DialoGPT-medium" #
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
return tokenizer, model
|
11 |
|
12 |
tokenizer, model = load_model_and_tokenizer()
|
13 |
|
14 |
-
# Streamlit App
|
15 |
st.title("General Chatbot")
|
16 |
-
st.
|
17 |
|
18 |
-
# Initialize the conversation
|
19 |
-
if "
|
20 |
-
st.session_state["
|
21 |
|
22 |
-
# Input
|
23 |
-
user_input = st.text_input("You:", placeholder="
|
24 |
|
25 |
if st.button("Send") and user_input:
|
26 |
-
#
|
27 |
-
st.session_state["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
#
|
30 |
-
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
31 |
-
chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
32 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
33 |
|
34 |
-
#
|
35 |
-
st.session_state["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# Display the conversation
|
38 |
-
for message in st.session_state["conversation_history"]:
|
39 |
-
if message["role"] == "user":
|
40 |
-
st.write(f"**You:** {message['content']}")
|
41 |
-
else:
|
42 |
-
st.write(f"**Bot:** {message['content']}")
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# # Load the model and tokenizer
|
5 |
+
# @st.cache_resource
|
6 |
+
# def load_model_and_tokenizer():
|
7 |
+
# model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model
|
8 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
# return tokenizer, model
|
11 |
+
|
12 |
+
# tokenizer, model = load_model_and_tokenizer()
|
13 |
+
|
14 |
+
# # Streamlit App
|
15 |
+
# st.title("General Chatbot")
|
16 |
+
# st.write("A chatbot powered by an open-source model from Hugging Face.")
|
17 |
+
|
18 |
+
# # Initialize the conversation
|
19 |
+
# if "conversation_history" not in st.session_state:
|
20 |
+
# st.session_state["conversation_history"] = []
|
21 |
+
|
22 |
+
# # Input box for user query
|
23 |
+
# user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
|
24 |
+
|
25 |
+
# if st.button("Send") and user_input:
|
26 |
+
# # Append user input to history
|
27 |
+
# st.session_state["conversation_history"].append({"role": "user", "content": user_input})
|
28 |
+
|
29 |
+
# # Tokenize and generate response
|
30 |
+
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
31 |
+
# chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
32 |
+
# response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
33 |
+
|
34 |
+
# # Append model response to history
|
35 |
+
# st.session_state["conversation_history"].append({"role": "assistant", "content": response})
|
36 |
+
|
37 |
+
# # Display the conversation
|
38 |
+
# for message in st.session_state["conversation_history"]:
|
39 |
+
# if message["role"] == "user":
|
40 |
+
# st.write(f"**You:** {message['content']}")
|
41 |
+
# else:
|
42 |
+
# st.write(f"**Bot:** {message['content']}")
|
43 |
+
|
44 |
import streamlit as st
|
45 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
46 |
|
47 |
# Load the model and tokenizer
|
48 |
@st.cache_resource
|
49 |
def load_model_and_tokenizer():
|
50 |
+
model_name = "microsoft/DialoGPT-medium" # You can replace with any Hugging Face conversational model
|
51 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
52 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
53 |
return tokenizer, model
|
54 |
|
55 |
tokenizer, model = load_model_and_tokenizer()
|
56 |
|
57 |
+
# Streamlit App Title
|
58 |
st.title("General Chatbot")
|
59 |
+
st.markdown("This chatbot is powered by an open-source model from Hugging Face. Feel free to ask me anything!")
|
60 |
|
61 |
+
# Initialize the session state for conversation history
|
62 |
+
if "chat_history" not in st.session_state:
|
63 |
+
st.session_state["chat_history"] = ""
|
64 |
|
65 |
+
# User Input Section
|
66 |
+
user_input = st.text_input("You:", placeholder="Type your message here...", key="user_input")
|
67 |
|
68 |
if st.button("Send") and user_input:
|
69 |
+
# Add user input to the conversation history
|
70 |
+
st.session_state["chat_history"] += f"User: {user_input}\n"
|
71 |
+
|
72 |
+
# Tokenize the input with conversation history
|
73 |
+
input_ids = tokenizer.encode(st.session_state["chat_history"], return_tensors="pt")
|
74 |
+
|
75 |
+
# Generate a response
|
76 |
+
chat_history_ids = model.generate(
|
77 |
+
input_ids,
|
78 |
+
max_length=1500, # Allow long responses
|
79 |
+
min_length=200, # Ensure responses are not too short
|
80 |
+
temperature=1.0, # Adjust for creativity
|
81 |
+
top_p=0.9, # Nucleus sampling for focused responses
|
82 |
+
repetition_penalty=1.2, # Penalize repeated phrases
|
83 |
+
pad_token_id=tokenizer.eos_token_id
|
84 |
+
)
|
85 |
|
86 |
+
# Decode the model's response
|
|
|
|
|
87 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
88 |
|
89 |
+
# Add the response to the conversation history
|
90 |
+
st.session_state["chat_history"] += f"Bot: {response}\n"
|
91 |
+
|
92 |
+
# Display the conversation
|
93 |
+
st.markdown(f"**You:** {user_input}")
|
94 |
+
st.markdown(f"**Bot:** {response}")
|
95 |
+
|
96 |
+
# Display Full Conversation History
|
97 |
+
st.divider()
|
98 |
+
st.subheader("Conversation History:")
|
99 |
+
st.text(st.session_state["chat_history"])
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|