Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -47,7 +47,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
47 |
# Load the model and tokenizer
|
48 |
@st.cache_resource
|
49 |
def load_model_and_tokenizer():
|
50 |
-
model_name = "
|
51 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
52 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
53 |
return tokenizer, model
|
@@ -55,7 +55,7 @@ def load_model_and_tokenizer():
|
|
55 |
tokenizer, model = load_model_and_tokenizer()
|
56 |
|
57 |
# Streamlit App
|
58 |
-
st.title("General Chatbot with
|
59 |
st.write("A chatbot powered by an open-source model from Hugging Face.")
|
60 |
|
61 |
# Initialize the conversation
|
@@ -65,26 +65,33 @@ if "conversation_history" not in st.session_state:
|
|
65 |
# Input for user query
|
66 |
user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
|
67 |
|
68 |
-
# Slider for
|
69 |
-
max_length = st.slider("Set
|
70 |
|
71 |
if st.button("Send") and user_input:
|
72 |
-
#
|
73 |
st.session_state["conversation_history"].append({"role": "user", "content": user_input})
|
74 |
|
75 |
-
#
|
76 |
-
|
|
|
|
|
|
|
77 |
chat_history_ids = model.generate(
|
78 |
-
input_ids,
|
79 |
-
max_length=max_length,
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
83 |
|
84 |
-
#
|
85 |
st.session_state["conversation_history"].append({"role": "assistant", "content": response})
|
86 |
|
87 |
-
# Display
|
88 |
for message in st.session_state["conversation_history"]:
|
89 |
if message["role"] == "user":
|
90 |
st.write(f"**You:** {message['content']}")
|
|
|
47 |
# Load the model and tokenizer
|
48 |
@st.cache_resource
|
49 |
def load_model_and_tokenizer():
|
50 |
+
model_name = "EleutherAI/gpt-neo-2.7B" # Model suited for longer responses
|
51 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
52 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
53 |
return tokenizer, model
|
|
|
55 |
tokenizer, model = load_model_and_tokenizer()
|
56 |
|
57 |
# Streamlit App
|
58 |
+
st.title("General Chatbot with Detailed Responses")
|
59 |
st.write("A chatbot powered by an open-source model from Hugging Face.")
|
60 |
|
61 |
# Initialize the conversation
|
|
|
65 |
# Input for user query
|
66 |
user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input")
|
67 |
|
68 |
+
# Slider for response length
|
69 |
+
max_length = st.slider("Set maximum response length:", min_value=100, max_value=1000, step=50, value=300)
|
70 |
|
71 |
if st.button("Send") and user_input:
|
72 |
+
# Add user query to the conversation
|
73 |
st.session_state["conversation_history"].append({"role": "user", "content": user_input})
|
74 |
|
75 |
+
# Build prompt for the model
|
76 |
+
prompt = f"{user_input} Please explain in detail."
|
77 |
+
input_ids = tokenizer.encode(prompt + tokenizer.eos_token, return_tensors="pt")
|
78 |
+
|
79 |
+
# Generate response
|
80 |
chat_history_ids = model.generate(
|
81 |
+
input_ids,
|
82 |
+
max_length=max_length,
|
83 |
+
temperature=0.9,
|
84 |
+
top_p=0.9,
|
85 |
+
repetition_penalty=1.2,
|
86 |
+
pad_token_id=tokenizer.eos_token_id,
|
87 |
+
early_stopping=False
|
88 |
)
|
89 |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
90 |
|
91 |
+
# Add bot response to the conversation
|
92 |
st.session_state["conversation_history"].append({"role": "assistant", "content": response})
|
93 |
|
94 |
+
# Display conversation history
|
95 |
for message in st.session_state["conversation_history"]:
|
96 |
if message["role"] == "user":
|
97 |
st.write(f"**You:** {message['content']}")
|