Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# from transformers import AutoModelForCausalLM, AutoTokenizer | |
# # Load the model and tokenizer | |
# @st.cache_resource | |
# def load_model_and_tokenizer(): | |
# model_name = "microsoft/DialoGPT-medium" # Replace with your chosen model | |
# tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# model = AutoModelForCausalLM.from_pretrained(model_name) | |
# return tokenizer, model | |
# tokenizer, model = load_model_and_tokenizer() | |
# # Streamlit App | |
# st.title("General Chatbot") | |
# st.write("A chatbot powered by an open-source model from Hugging Face.") | |
# # Initialize the conversation | |
# if "conversation_history" not in st.session_state: | |
# st.session_state["conversation_history"] = [] | |
# # Input box for user query | |
# user_input = st.text_input("You:", placeholder="Ask me anything...", key="user_input") | |
# if st.button("Send") and user_input: | |
# # Append user input to history | |
# st.session_state["conversation_history"].append({"role": "user", "content": user_input}) | |
# # Tokenize and generate response | |
# input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt") | |
# chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
# response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) | |
# # Append model response to history | |
# st.session_state["conversation_history"].append({"role": "assistant", "content": response}) | |
# # Display the conversation | |
# for message in st.session_state["conversation_history"]: | |
# if message["role"] == "user": | |
# st.write(f"**You:** {message['content']}") | |
# else: | |
# st.write(f"**Bot:** {message['content']}") | |
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
def load_model_and_tokenizer(): | |
model_name = "microsoft/DialoGPT-medium" # You can replace with any Hugging Face conversational model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return tokenizer, model | |
tokenizer, model = load_model_and_tokenizer() | |
# Streamlit App Title | |
st.title("General Chatbot") | |
st.markdown("This chatbot is powered by an open-source model from Hugging Face. Feel free to ask me anything!") | |
# Initialize the session state for conversation history | |
if "chat_history" not in st.session_state: | |
st.session_state["chat_history"] = "" | |
# User Input Section | |
user_input = st.text_input("You:", placeholder="Type your message here...", key="user_input") | |
if st.button("Send") and user_input: | |
# Add user input to the conversation history | |
st.session_state["chat_history"] += f"User: {user_input}\n" | |
# Tokenize the input with conversation history | |
input_ids = tokenizer.encode(st.session_state["chat_history"], return_tensors="pt") | |
# Generate a response | |
chat_history_ids = model.generate( | |
input_ids, | |
max_length=1500, # Allow long responses | |
min_length=200, # Ensure responses are not too short | |
temperature=1.0, # Adjust for creativity | |
top_p=0.9, # Nucleus sampling for focused responses | |
repetition_penalty=1.2, # Penalize repeated phrases | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Decode the model's response | |
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) | |
# Add the response to the conversation history | |
st.session_state["chat_history"] += f"Bot: {response}\n" | |
# Display the conversation | |
st.markdown(f"**You:** {user_input}") | |
st.markdown(f"**Bot:** {response}") | |
# Display Full Conversation History | |
st.divider() | |
st.subheader("Conversation History:") | |
st.text(st.session_state["chat_history"]) | |