File size: 2,825 Bytes
f6432f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b6e6dd
f6432f1
1b6e6dd
f6432f1
1b6e6dd
 
f6432f1
 
 
1b6e6dd
 
f6432f1
1b6e6dd
f6432f1
 
 
1b6e6dd
 
 
 
f6432f1
1b6e6dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# import streamlit as st
# from transformers import GPT2LMHeadModel, GPT2Tokenizer

# # Load the GPT-2 model and tokenizer
# @st.cache_resource
# def load_model():
#     model_name = "gpt2"
#     tokenizer = GPT2Tokenizer.from_pretrained(model_name)
#     model = GPT2LMHeadModel.from_pretrained(model_name)
#     return model, tokenizer

# # Function to generate a response from GPT-2
# def generate_response(input_text, model, tokenizer):
#     inputs = tokenizer.encode(input_text, return_tensors="pt")
#     outputs = model.generate(inputs, max_length=150, do_sample=True, top_p=0.9, top_k=50)
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     return response

# # Streamlit UI setup
# def main():
#     st.title("GPT-2 Chatbot")

#     # Chat history
#     if 'history' not in st.session_state:
#         st.session_state['history'] = []

#     user_input = st.text_input("You:", "")
    
#     # Generate and display response
#     if user_input:
#         model, tokenizer = load_model()
#         response = generate_response(user_input, model, tokenizer)
#         st.session_state['history'].append({"user": user_input, "bot": response})
    
#     # Display chat history
#     for chat in st.session_state['history']:
#         st.write(f"You: {chat['user']}")
#         st.write(f"Bot: {chat['bot']}")

# if __name__ == "__main__":
#     main()
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the DialoGPT model and tokenizer
@st.cache_resource
def load_model():
    model_name = "microsoft/DialoGPT-medium"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    return model, tokenizer

# Function to generate a response from DialoGPT
def generate_response(input_text, model, tokenizer):
    inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt")
    outputs = model.generate(inputs, max_length=150, pad_token_id=tokenizer.eos_token_id, do_sample=True, top_p=0.9, top_k=50)
    response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
    return response

# Streamlit UI setup
def main():
    st.title("DialoGPT Chatbot")

    # Chat history
    if 'history' not in st.session_state:
        st.session_state['history'] = []

    user_input = st.text_input("You:", "")
    
    # Generate and display response
    if user_input:
        model, tokenizer = load_model()
        response = generate_response(user_input, model, tokenizer)
        st.session_state['history'].append({"user": user_input, "bot": response})
    
    # Display chat history
    for chat in st.session_state['history']:
        st.write(f"You: {chat['user']}")
        st.write(f"Bot: {chat['bot']}")

if __name__ == "__main__":
    main()