Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
|
4 |
-
# Load the
|
5 |
@st.cache_resource
|
6 |
def load_model():
|
7 |
-
model_name = "
|
8 |
-
tokenizer =
|
9 |
-
model =
|
10 |
return model, tokenizer
|
11 |
|
12 |
-
# Function to generate a response from
|
13 |
def generate_response(input_text, model, tokenizer):
|
14 |
-
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
15 |
-
outputs = model.generate(inputs, max_length=150, do_sample=True, top_p=0.9, top_k=50)
|
16 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
return response
|
18 |
|
19 |
# Streamlit UI setup
|
20 |
def main():
|
21 |
-
st.title("
|
22 |
|
23 |
# Chat history
|
24 |
if 'history' not in st.session_state:
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
|
4 |
+
# # Load the GPT-2 model and tokenizer
|
5 |
+
# @st.cache_resource
|
6 |
+
# def load_model():
|
7 |
+
# model_name = "gpt2"
|
8 |
+
# tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
9 |
+
# model = GPT2LMHeadModel.from_pretrained(model_name)
|
10 |
+
# return model, tokenizer
|
11 |
+
|
12 |
+
# # Function to generate a response from GPT-2
|
13 |
+
# def generate_response(input_text, model, tokenizer):
|
14 |
+
# inputs = tokenizer.encode(input_text, return_tensors="pt")
|
15 |
+
# outputs = model.generate(inputs, max_length=150, do_sample=True, top_p=0.9, top_k=50)
|
16 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
+
# return response
|
18 |
+
|
19 |
+
# # Streamlit UI setup
|
20 |
+
# def main():
|
21 |
+
# st.title("GPT-2 Chatbot")
|
22 |
+
|
23 |
+
# # Chat history
|
24 |
+
# if 'history' not in st.session_state:
|
25 |
+
# st.session_state['history'] = []
|
26 |
+
|
27 |
+
# user_input = st.text_input("You:", "")
|
28 |
+
|
29 |
+
# # Generate and display response
|
30 |
+
# if user_input:
|
31 |
+
# model, tokenizer = load_model()
|
32 |
+
# response = generate_response(user_input, model, tokenizer)
|
33 |
+
# st.session_state['history'].append({"user": user_input, "bot": response})
|
34 |
+
|
35 |
+
# # Display chat history
|
36 |
+
# for chat in st.session_state['history']:
|
37 |
+
# st.write(f"You: {chat['user']}")
|
38 |
+
# st.write(f"Bot: {chat['bot']}")
|
39 |
+
|
40 |
+
# if __name__ == "__main__":
|
41 |
+
# main()
|
42 |
import streamlit as st
|
43 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
|
45 |
+
# Load the DialoGPT model and tokenizer
|
46 |
@st.cache_resource
|
47 |
def load_model():
|
48 |
+
model_name = "microsoft/DialoGPT-medium"
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
51 |
return model, tokenizer
|
52 |
|
53 |
+
# Function to generate a response from DialoGPT
|
54 |
def generate_response(input_text, model, tokenizer):
|
55 |
+
inputs = tokenizer.encode(input_text + tokenizer.eos_token, return_tensors="pt")
|
56 |
+
outputs = model.generate(inputs, max_length=150, pad_token_id=tokenizer.eos_token_id, do_sample=True, top_p=0.9, top_k=50)
|
57 |
+
response = tokenizer.decode(outputs[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
58 |
return response
|
59 |
|
60 |
# Streamlit UI setup
|
61 |
def main():
|
62 |
+
st.title("DialoGPT Chatbot")
|
63 |
|
64 |
# Chat history
|
65 |
if 'history' not in st.session_state:
|