File size: 3,098 Bytes
e8c4882
1d2e742
 
 
e8c4882
fef10af
6fbd926
e8c4882
 
 
1d2e742
fef10af
 
 
 
 
 
e8c4882
fef10af
 
 
 
e8c4882
 
fef10af
 
e8c4882
1d2e742
e8c4882
1d2e742
 
 
 
 
 
fef10af
 
1d2e742
 
fef10af
 
 
1d2e742
fef10af
 
 
1d2e742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c4882
1d2e742
 
 
e8c4882
1d2e742
 
 
 
e8c4882
1d2e742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import gradio as gr
import numpy as np
import tensorflow as tf
import cv2
from mrcnn.config import Config
from mrcnn import model as modellib

# Set environment variable to avoid floating-point errors
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'

# Define Mask R-CNN configuration
class InferenceConfig(Config):
    NAME = "mask_rcnn"
    NUM_CLASSES = 1 + 80  # Update according to your dataset
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

config = InferenceConfig()

# Rebuild the Mask R-CNN model
model = modellib.MaskRCNN(mode="inference", config=config, model_dir=os.getcwd())

# Load the Mask R-CNN model weights
model_path = os.path.join('toolkit', 'condmodel_100.h5')
model.load_weights(model_path, by_name=True)
print("Mask R-CNN model loaded successfully with weights.")

# Function to apply Mask R-CNN for image segmentation
def apply_mask_rcnn(image):
    try:
        # Convert image to RGB (in case of RGBA or grayscale)
        if image.shape[2] == 4:  # Convert RGBA to RGB
            image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)

        # Resize the image to match the model input size (for inference)
        resized_image = cv2.resize(image, (1024, 1024))  # Adjust based on the input shape of your model
        input_image = np.expand_dims(resized_image, axis=0)

        # Use Mask R-CNN to predict
        result = model.detect(input_image, verbose=0)
        r = result[0]

        # Create a mask for the detected objects
        mask = r['masks']
        mask = np.sum(mask, axis=-1)  # Combine masks for all objects

        # Resize mask back to the original image size
        mask = cv2.resize(mask, (image.shape[1], image.shape[0]))

        # Create a segmentation overlay on the original image
        mask_overlay = np.zeros_like(image)
        mask_overlay[mask > 0.5] = [0, 255, 0]  # Green mask

        # Combine the original image with the mask
        segmented_image = cv2.addWeighted(image, 1, mask_overlay, 0.5, 0)

        return segmented_image

    except Exception as e:
        print(f"Error in segmentation: {e}")
        return image  # Return original image if segmentation fails

# Gradio interface definition
inputs = gr.Image(source="upload", tool="editor", type="numpy", label="Upload an image")
outputs = gr.Image(type="numpy", label="Segmented Image")

# Gradio app layout
with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center;'>Image Segmentation with Mask R-CNN</h1>")
    gr.Markdown("Upload an image to see segmentation results using the Mask R-CNN model.")
    
    # Input and output layout
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Upload an Image")
            inputs.render()  # Render the input (image upload)

            # Submit button
            gr.Button("Submit").click(fn=apply_mask_rcnn, inputs=inputs, outputs=outputs)
            gr.Button("Clear").click(fn=lambda: None)

        with gr.Column():
            gr.Markdown("### Segmented Image Output")
            outputs.render()  # Render the output (segmented image)

# Launch the Gradio app
demo.launch()