Spaces:
Sleeping
Sleeping
File size: 3,098 Bytes
e8c4882 1d2e742 e8c4882 fef10af 6fbd926 e8c4882 1d2e742 fef10af e8c4882 fef10af e8c4882 fef10af e8c4882 1d2e742 e8c4882 1d2e742 fef10af 1d2e742 fef10af 1d2e742 fef10af 1d2e742 e8c4882 1d2e742 e8c4882 1d2e742 e8c4882 1d2e742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import os
import gradio as gr
import numpy as np
import tensorflow as tf
import cv2
from mrcnn.config import Config
from mrcnn import model as modellib
# Set environment variable to avoid floating-point errors
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Define Mask R-CNN configuration
class InferenceConfig(Config):
NAME = "mask_rcnn"
NUM_CLASSES = 1 + 80 # Update according to your dataset
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
# Rebuild the Mask R-CNN model
model = modellib.MaskRCNN(mode="inference", config=config, model_dir=os.getcwd())
# Load the Mask R-CNN model weights
model_path = os.path.join('toolkit', 'condmodel_100.h5')
model.load_weights(model_path, by_name=True)
print("Mask R-CNN model loaded successfully with weights.")
# Function to apply Mask R-CNN for image segmentation
def apply_mask_rcnn(image):
try:
# Convert image to RGB (in case of RGBA or grayscale)
if image.shape[2] == 4: # Convert RGBA to RGB
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
# Resize the image to match the model input size (for inference)
resized_image = cv2.resize(image, (1024, 1024)) # Adjust based on the input shape of your model
input_image = np.expand_dims(resized_image, axis=0)
# Use Mask R-CNN to predict
result = model.detect(input_image, verbose=0)
r = result[0]
# Create a mask for the detected objects
mask = r['masks']
mask = np.sum(mask, axis=-1) # Combine masks for all objects
# Resize mask back to the original image size
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
# Create a segmentation overlay on the original image
mask_overlay = np.zeros_like(image)
mask_overlay[mask > 0.5] = [0, 255, 0] # Green mask
# Combine the original image with the mask
segmented_image = cv2.addWeighted(image, 1, mask_overlay, 0.5, 0)
return segmented_image
except Exception as e:
print(f"Error in segmentation: {e}")
return image # Return original image if segmentation fails
# Gradio interface definition
inputs = gr.Image(source="upload", tool="editor", type="numpy", label="Upload an image")
outputs = gr.Image(type="numpy", label="Segmented Image")
# Gradio app layout
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>Image Segmentation with Mask R-CNN</h1>")
gr.Markdown("Upload an image to see segmentation results using the Mask R-CNN model.")
# Input and output layout
with gr.Row():
with gr.Column():
gr.Markdown("### Upload an Image")
inputs.render() # Render the input (image upload)
# Submit button
gr.Button("Submit").click(fn=apply_mask_rcnn, inputs=inputs, outputs=outputs)
gr.Button("Clear").click(fn=lambda: None)
with gr.Column():
gr.Markdown("### Segmented Image Output")
outputs.render() # Render the output (segmented image)
# Launch the Gradio app
demo.launch()
|