Update app.py
Browse files
app.py
CHANGED
@@ -92,30 +92,54 @@ def predict_and_plot(velocity, temperature, precipitation, humidity):
|
|
92 |
for i in range(contamination_levels.shape[1])
|
93 |
]).T
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# Plot the graph
|
96 |
fig, ax = plt.subplots(figsize=(12, 8))
|
97 |
|
98 |
-
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
|
99 |
for i in range(simulated_contamination_levels.shape[1]):
|
100 |
ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
|
101 |
ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
|
|
|
|
|
102 |
|
103 |
ax.set_title('Contamination Levels Over Time for Each Lidar')
|
104 |
ax.set_xlabel('Time (seconds)')
|
105 |
ax.set_ylabel('Contamination Level')
|
106 |
ax.legend()
|
107 |
ax.grid(True)
|
108 |
-
|
|
|
109 |
plot_output = fig
|
110 |
-
|
111 |
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
|
112 |
gradients_output = [f"{val:.4f}" for val in gradients[0]]
|
113 |
-
cleaning_time_output = [f"{
|
114 |
|
115 |
return [plot_output] + contamination_output + gradients_output + cleaning_time_output
|
116 |
|
117 |
except Exception as e:
|
118 |
-
print(f"Error in
|
119 |
return [plt.figure()] + ["Error"] * 18
|
120 |
|
121 |
inputs = [
|
@@ -162,19 +186,20 @@ with gr.Blocks() as demo:
|
|
162 |
gr.Markdown("### Input Parameters")
|
163 |
for inp in inputs:
|
164 |
inp.render()
|
165 |
-
# Submit and Clear Buttons under the inputs
|
166 |
-
with gr.Row():
|
167 |
-
gr.Button(value="Submit", variant="primary").click(
|
168 |
-
fn=predict_and_plot,
|
169 |
-
inputs=inputs,
|
170 |
-
outputs=[gr.Plot(label="Contamination Levels Over Time")] + contamination_outputs + gradients_outputs + cleaning_time_outputs
|
171 |
-
)
|
172 |
-
gr.Button(value="Clear").click(fn=lambda: None)
|
173 |
|
174 |
with gr.Column(scale=1):
|
175 |
gr.Image(image_path)
|
176 |
|
177 |
-
# Middle Section:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
with gr.Row():
|
179 |
with gr.Column(scale=2):
|
180 |
gr.Markdown("### Contamination Predictions")
|
@@ -191,4 +216,10 @@ with gr.Blocks() as demo:
|
|
191 |
for out in cleaning_time_outputs:
|
192 |
out.render()
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
demo.launch()
|
|
|
92 |
for i in range(contamination_levels.shape[1])
|
93 |
]).T
|
94 |
|
95 |
+
# Function to calculate cleaning time using linear interpolation
|
96 |
+
def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
|
97 |
+
cleaning_times = []
|
98 |
+
for i in range(contamination_levels.shape[1]):
|
99 |
+
levels = contamination_levels[:, i]
|
100 |
+
for j in range(1, len(levels)):
|
101 |
+
if levels[j-1] <= threshold <= levels[j]:
|
102 |
+
# Linear interpolation
|
103 |
+
t1, t2 = time_intervals[j-1], time_intervals[j]
|
104 |
+
c1, c2 = levels[j-1], levels[j]
|
105 |
+
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
|
106 |
+
cleaning_times.append(cleaning_time)
|
107 |
+
break
|
108 |
+
else:
|
109 |
+
cleaning_times.append(time_intervals[-1]) # If threshold is not reached
|
110 |
+
return cleaning_times
|
111 |
+
|
112 |
+
# Calculate cleaning times for all 6 lidars
|
113 |
+
cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
|
114 |
+
|
115 |
+
# Lidar names
|
116 |
+
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
|
117 |
+
|
118 |
# Plot the graph
|
119 |
fig, ax = plt.subplots(figsize=(12, 8))
|
120 |
|
|
|
121 |
for i in range(simulated_contamination_levels.shape[1]):
|
122 |
ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
|
123 |
ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
|
124 |
+
if i < len(cleaning_times):
|
125 |
+
ax.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
|
126 |
|
127 |
ax.set_title('Contamination Levels Over Time for Each Lidar')
|
128 |
ax.set_xlabel('Time (seconds)')
|
129 |
ax.set_ylabel('Contamination Level')
|
130 |
ax.legend()
|
131 |
ax.grid(True)
|
132 |
+
|
133 |
+
# Flatten the results into a single list of 19 outputs (1 plot + 6 contamination + 6 gradients + 6 cleaning times)
|
134 |
plot_output = fig
|
|
|
135 |
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
|
136 |
gradients_output = [f"{val:.4f}" for val in gradients[0]]
|
137 |
+
cleaning_time_output = [f"{val:.2f}" for val in cleaning_times]
|
138 |
|
139 |
return [plot_output] + contamination_output + gradients_output + cleaning_time_output
|
140 |
|
141 |
except Exception as e:
|
142 |
+
print(f"Error in Gradio interface: {e}")
|
143 |
return [plt.figure()] + ["Error"] * 18
|
144 |
|
145 |
inputs = [
|
|
|
186 |
gr.Markdown("### Input Parameters")
|
187 |
for inp in inputs:
|
188 |
inp.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
with gr.Column(scale=1):
|
191 |
gr.Image(image_path)
|
192 |
|
193 |
+
# Middle Section: Submit and Clear Buttons
|
194 |
+
with gr.Row():
|
195 |
+
gr.Button(value="Submit", variant="primary").click(
|
196 |
+
fn=predict_and_plot,
|
197 |
+
inputs=inputs,
|
198 |
+
outputs=[gr.Plot(label="Contamination Levels Over Time")] + contamination_outputs + gradients_outputs + cleaning_time_outputs
|
199 |
+
)
|
200 |
+
gr.Button(value="Clear").click(fn=lambda: None)
|
201 |
+
|
202 |
+
# Bottom Section: Outputs (Three columns) and Plot Below
|
203 |
with gr.Row():
|
204 |
with gr.Column(scale=2):
|
205 |
gr.Markdown("### Contamination Predictions")
|
|
|
216 |
for out in cleaning_time_outputs:
|
217 |
out.render()
|
218 |
|
219 |
+
# Graph below the outputs
|
220 |
+
with gr.Row():
|
221 |
+
with gr.Column():
|
222 |
+
gr.Markdown("### Contamination Levels Over Time")
|
223 |
+
gr.Plot(label="Contamination Levels Over Time")
|
224 |
+
|
225 |
demo.launch()
|