Update app.py
Browse files
app.py
CHANGED
@@ -51,7 +51,7 @@ try:
|
|
51 |
except Exception as e:
|
52 |
print(f"Error loading models or scaler: {e}")
|
53 |
|
54 |
-
def
|
55 |
try:
|
56 |
# Prepare the example data
|
57 |
example_data = pd.DataFrame({
|
@@ -83,24 +83,13 @@ def predict_contamination_gradients(velocity, temperature, precipitation, humidi
|
|
83 |
# Predict contamination levels and gradients for the single example
|
84 |
contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)
|
85 |
|
86 |
-
return contamination_levels[0], gradients[0]
|
87 |
-
|
88 |
-
except Exception as e:
|
89 |
-
print(f"Error in Gradio interface: {e}")
|
90 |
-
return ["Error"] * 12
|
91 |
-
|
92 |
-
def plot_contamination_over_time(velocity, temperature, precipitation, humidity):
|
93 |
-
try:
|
94 |
-
# Predict contamination levels first
|
95 |
-
contamination_levels, _ = predict_contamination_gradients(velocity, temperature, precipitation, humidity)
|
96 |
-
|
97 |
# Simulate contamination levels at multiple time intervals
|
98 |
time_intervals = np.arange(0, 601, 60) # Simulating time intervals from 0 to 600 seconds
|
99 |
|
100 |
# Generate simulated contamination levels (linear interpolation between predicted values)
|
101 |
simulated_contamination_levels = np.array([
|
102 |
-
np.linspace(contamination_levels[i], contamination_levels[i] * 2, len(time_intervals))
|
103 |
-
for i in range(
|
104 |
]).T
|
105 |
|
106 |
# Plot the graph
|
@@ -117,11 +106,17 @@ def plot_contamination_over_time(velocity, temperature, precipitation, humidity)
|
|
117 |
ax.legend()
|
118 |
ax.grid(True)
|
119 |
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
except Exception as e:
|
123 |
-
print(f"Error in plotting: {e}")
|
124 |
-
return plt.figure()
|
125 |
|
126 |
inputs = [
|
127 |
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
|
@@ -170,9 +165,9 @@ with gr.Blocks() as demo:
|
|
170 |
# Submit and Clear Buttons under the inputs
|
171 |
with gr.Row():
|
172 |
gr.Button(value="Submit", variant="primary").click(
|
173 |
-
fn=
|
174 |
inputs=inputs,
|
175 |
-
outputs=contamination_outputs + gradients_outputs + cleaning_time_outputs
|
176 |
)
|
177 |
gr.Button(value="Clear").click(fn=lambda: None)
|
178 |
|
@@ -196,14 +191,4 @@ with gr.Blocks() as demo:
|
|
196 |
for out in cleaning_time_outputs:
|
197 |
out.render()
|
198 |
|
199 |
-
# Bottom Section: Graph at the very end
|
200 |
-
with gr.Row():
|
201 |
-
with gr.Column():
|
202 |
-
gr.Markdown("### Contamination Levels Over Time")
|
203 |
-
gr.Plot(label="Contamination Levels Over Time").click(
|
204 |
-
fn=plot_contamination_over_time,
|
205 |
-
inputs=inputs,
|
206 |
-
outputs="plot"
|
207 |
-
)
|
208 |
-
|
209 |
demo.launch()
|
|
|
51 |
except Exception as e:
|
52 |
print(f"Error loading models or scaler: {e}")
|
53 |
|
54 |
+
def predict_and_plot(velocity, temperature, precipitation, humidity):
|
55 |
try:
|
56 |
# Prepare the example data
|
57 |
example_data = pd.DataFrame({
|
|
|
83 |
# Predict contamination levels and gradients for the single example
|
84 |
contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
# Simulate contamination levels at multiple time intervals
|
87 |
time_intervals = np.arange(0, 601, 60) # Simulating time intervals from 0 to 600 seconds
|
88 |
|
89 |
# Generate simulated contamination levels (linear interpolation between predicted values)
|
90 |
simulated_contamination_levels = np.array([
|
91 |
+
np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
|
92 |
+
for i in range(contamination_levels.shape[1])
|
93 |
]).T
|
94 |
|
95 |
# Plot the graph
|
|
|
106 |
ax.legend()
|
107 |
ax.grid(True)
|
108 |
|
109 |
+
plot_output = fig
|
110 |
+
|
111 |
+
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
|
112 |
+
gradients_output = [f"{val:.4f}" for val in gradients[0]]
|
113 |
+
cleaning_time_output = [f"{600:.2f}" for _ in range(6)] # Placeholder cleaning times
|
114 |
+
|
115 |
+
return [plot_output] + contamination_output + gradients_output + cleaning_time_output
|
116 |
|
117 |
except Exception as e:
|
118 |
+
print(f"Error in prediction and plotting: {e}")
|
119 |
+
return [plt.figure()] + ["Error"] * 18
|
120 |
|
121 |
inputs = [
|
122 |
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
|
|
|
165 |
# Submit and Clear Buttons under the inputs
|
166 |
with gr.Row():
|
167 |
gr.Button(value="Submit", variant="primary").click(
|
168 |
+
fn=predict_and_plot,
|
169 |
inputs=inputs,
|
170 |
+
outputs=[gr.Plot(label="Contamination Levels Over Time")] + contamination_outputs + gradients_outputs + cleaning_time_outputs
|
171 |
)
|
172 |
gr.Button(value="Clear").click(fn=lambda: None)
|
173 |
|
|
|
191 |
for out in cleaning_time_outputs:
|
192 |
out.render()
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
demo.launch()
|