saba000farahani's picture
Create app.py
57517e4 verified
raw
history blame
5.7 kB
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import os
import sklearn # Import sklearn
# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")
# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
# Load the scaler and models
try:
# Load the scaler
with open(scaler_path, 'r') as f:
scaler_params = json.load(f)
scaler_X = MinMaxScaler()
scaler_X.scale_ = np.array(scaler_params["scale_"])
scaler_X.min_ = np.array(scaler_params["min_"])
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
# Load the models
loaded_rf_model = load(rf_model_path)
print("Random Forest model loaded successfully.")
loaded_mlp_model = load_model(mlp_model_path)
print("MLP model loaded successfully.")
loaded_meta_model = load(meta_model_path)
print("Meta model loaded successfully.")
except Exception as e:
print(f"Error loading models or scaler: {e}")
def predict_new_values(new_input_data):
try:
# Ensure the new input data is in the correct format
print(f"Raw Input Data: {new_input_data}")
new_input_data = np.array(new_input_data).reshape(1, -1)
# Scale the new input data
new_input_scaled = scaler_X.transform(new_input_data)
print(f"Scaled Input Data: {new_input_scaled}")
# Make predictions with the MLP model
contamination_predictions, gradients_predictions = loaded_mlp_model.predict(new_input_scaled)
return contamination_predictions[0], gradients_predictions[0]
except Exception as e:
print(f"Error in prediction: {e}")
return (["Error"] * 6, ["Error"] * 6)
def gradio_interface(velocity, temperature, precipitation, humidity):
try:
input_data = [velocity, temperature, precipitation, humidity]
print(f"Input Data: {input_data}")
contamination_predictions, gradients_predictions = predict_new_values(input_data)
print(f"Contamination Predictions: {contamination_predictions}")
print(f"Gradients Predictions: {gradients_predictions}")
return (
[f"{val * 100:.2f}%" if val != "Error" else "Error" for val in contamination_predictions],
[f"{val:.2f}" if val != "Error" else "Error" for val in gradients_predictions]
)
except Exception as e:
print(f"Error in Gradio interface: {e}")
return (["Error"] * 6, ["Error"] * 6)
inputs = [
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]
contamination_outputs = [
gr.Textbox(label="Front Left Contamination"),
gr.Textbox(label="Front Right Contamination"),
gr.Textbox(label="Left Contamination"),
gr.Textbox(label="Right Contamination"),
gr.Textbox(label="Roof Contamination"),
gr.Textbox(label="Rear Contamination")
]
gradients_outputs = [
gr.Textbox(label="Front Left Gradient"),
gr.Textbox(label="Front Right Gradient"),
gr.Textbox(label="Left Gradient"),
gr.Textbox(label="Right Gradient"),
gr.Textbox(label="Roof Gradient"),
gr.Textbox(label="Rear Gradient")
]
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination & Gradient Prediction</h1>")
gr.Markdown("This application predicts the contamination levels and corresponding gradients for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
with gr.Row():
with gr.Column():
gr.Markdown("### Input Parameters")
for inp in inputs:
inp.render()
# Centered image display
with gr.Row():
with gr.Column(scale=1, min_width=0):
gr.Image(image_path) # Ensure the image is centered
gr.Button(value="Submit", variant="primary").click(fn=gradio_interface, inputs=inputs, outputs=contamination_outputs + gradients_outputs)
gr.Button(value="Clear").click(fn=lambda: None)
with gr.Column():
gr.Markdown("### Contamination Predictions")
for out in contamination_outputs:
out.render()
with gr.Column():
gr.Markdown("### Gradients Predictions")
for out in gradients_outputs:
out.render()
demo.launch()