saba000farahani's picture
Update app.py
0781dee verified
raw
history blame
6.7 kB
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn
# Assuming the previous setup and imports have been done
def predict_and_plot(velocity, temperature, precipitation, humidity):
try:
# Prepare the example data
example_data = pd.DataFrame({
'Velocity(mph)': [velocity],
'Temperature': [temperature],
'Precipitation': [precipitation],
'Humidity': [humidity]
})
# Scale the example data
example_data_scaled = scaler_X.transform(example_data)
# Function to predict contamination levels
def predict_contamination(example_data_scaled):
# Predict using MLP model
mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)
# Predict using RF model
rf_predictions = loaded_rf_model.predict(example_data_scaled)
# Combine predictions for meta model
combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)
# Predict using meta model
meta_predictions = loaded_meta_model.predict(combined_features)
return meta_predictions[:, :6] # Assuming the first 6 columns are contamination predictions
# Predict contamination levels for the single example
contamination_levels = predict_contamination(example_data_scaled)
# Simulate contamination levels at multiple time intervals
time_intervals = np.arange(0, 601, 60) # Simulating time intervals from 0 to 600 seconds
# Generate simulated contamination levels (linear interpolation between predicted values)
simulated_contamination_levels = np.array([
np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
for i in range(contamination_levels.shape[1])
]).T
# Function to calculate cleaning time using linear interpolation
def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
cleaning_times = []
for i in range(contamination_levels.shape[1]):
levels = contamination_levels[:, i]
for j in range(1, len(levels)):
if levels[j-1] <= threshold <= levels[j]:
# Linear interpolation
t1, t2 = time_intervals[j-1], time_intervals[j]
c1, c2 = levels[j-1], levels[j]
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
cleaning_times.append(cleaning_time)
break
return cleaning_times
# Calculate cleaning times for all 6 lidars
cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
# Lidar names
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
# Plot the graph
plt.figure(figsize=(12, 8))
for i in range(simulated_contamination_levels.shape[1]):
plt.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
plt.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
if i < len(cleaning_times):
plt.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
plt.title('Contamination Levels Over Time for Each Lidar')
plt.xlabel('Time (seconds)')
plt.ylabel('Contamination Level')
plt.legend()
plt.grid(True)
# Save the plot to a file
plt.savefig('plot.png')
# Return the plot and predictions
return plt, [f"{val * 100:.2f}%" for val in contamination_levels[0]], [f"{val:.2f}" for val in cleaning_times]
except Exception as e:
print(f"Error in Gradio interface: {e}")
return plt.figure(), ["Error"] * 6, ["Error"] * 6
inputs = [
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]
contamination_outputs = [
gr.Textbox(label="Front Left Contamination"),
gr.Textbox(label="Front Right Contamination"),
gr.Textbox(label="Left Contamination"),
gr.Textbox(label="Right Contamination"),
gr.Textbox(label="Roof Contamination"),
gr.Textbox(label="Rear Contamination")
]
cleaning_time_outputs = [
gr.Textbox(label="Front Left Cleaning Time"),
gr.Textbox(label="Front Right Cleaning Time"),
gr.Textbox(label="Left Cleaning Time"),
gr.Textbox(label="Right Cleaning Time"),
gr.Textbox(label="Roof Cleaning Time"),
gr.Textbox(label="Rear Cleaning Time")
]
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination & Cleaning Time Prediction</h1>")
gr.Markdown("This application predicts the contamination levels, corresponding gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
with gr.Row():
with gr.Column():
gr.Markdown("### Input Parameters")
for inp in inputs:
inp.render()
# Centered image display
with gr.Row():
with gr.Column(scale=1, min_width=0):
gr.Image(image_path) # Ensure the image is centered
gr.Button(value="Submit", variant="primary").click(
fn=predict_and_plot,
inputs=inputs,
outputs=[gr.Plot(label="Contamination Levels Over Time")] + contamination_outputs + cleaning_time_outputs
)
gr.Button(value="Clear").click(fn=lambda: None)
with gr.Column():
gr.Markdown("### Contamination Predictions")
for out in contamination_outputs:
out.render()
with gr.Column():
gr.Markdown("### Cleaning Time Predictions")
for out in cleaning_time_outputs:
out.render()
demo.launch()