|
import gradio as gr |
|
import numpy as np |
|
import json |
|
import joblib |
|
import tensorflow as tf |
|
import pandas as pd |
|
from joblib import load |
|
from tensorflow.keras.models import load_model |
|
from sklearn.preprocessing import MinMaxScaler |
|
import matplotlib.pyplot as plt |
|
import os |
|
import sklearn |
|
|
|
|
|
|
|
def predict_and_plot(velocity, temperature, precipitation, humidity): |
|
try: |
|
|
|
example_data = pd.DataFrame({ |
|
'Velocity(mph)': [velocity], |
|
'Temperature': [temperature], |
|
'Precipitation': [precipitation], |
|
'Humidity': [humidity] |
|
}) |
|
|
|
|
|
example_data_scaled = scaler_X.transform(example_data) |
|
|
|
|
|
def predict_contamination(example_data_scaled): |
|
|
|
mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled) |
|
|
|
|
|
rf_predictions = loaded_rf_model.predict(example_data_scaled) |
|
|
|
|
|
combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1) |
|
|
|
|
|
meta_predictions = loaded_meta_model.predict(combined_features) |
|
|
|
return meta_predictions[:, :6] |
|
|
|
|
|
contamination_levels = predict_contamination(example_data_scaled) |
|
|
|
|
|
time_intervals = np.arange(0, 601, 60) |
|
|
|
|
|
simulated_contamination_levels = np.array([ |
|
np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals)) |
|
for i in range(contamination_levels.shape[1]) |
|
]).T |
|
|
|
|
|
def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4): |
|
cleaning_times = [] |
|
for i in range(contamination_levels.shape[1]): |
|
levels = contamination_levels[:, i] |
|
for j in range(1, len(levels)): |
|
if levels[j-1] <= threshold <= levels[j]: |
|
|
|
t1, t2 = time_intervals[j-1], time_intervals[j] |
|
c1, c2 = levels[j-1], levels[j] |
|
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1) |
|
cleaning_times.append(cleaning_time) |
|
break |
|
return cleaning_times |
|
|
|
|
|
cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels) |
|
|
|
|
|
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear'] |
|
|
|
|
|
plt.figure(figsize=(12, 8)) |
|
|
|
for i in range(simulated_contamination_levels.shape[1]): |
|
plt.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}') |
|
plt.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "") |
|
if i < len(cleaning_times): |
|
plt.scatter(cleaning_times[i], 0.4, color='k') |
|
|
|
plt.title('Contamination Levels Over Time for Each Lidar') |
|
plt.xlabel('Time (seconds)') |
|
plt.ylabel('Contamination Level') |
|
plt.legend() |
|
plt.grid(True) |
|
|
|
|
|
plt.savefig('plot.png') |
|
|
|
|
|
return plt, [f"{val * 100:.2f}%" for val in contamination_levels[0]], [f"{val:.2f}" for val in cleaning_times] |
|
|
|
except Exception as e: |
|
print(f"Error in Gradio interface: {e}") |
|
return plt.figure(), ["Error"] * 6, ["Error"] * 6 |
|
|
|
inputs = [ |
|
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"), |
|
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"), |
|
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"), |
|
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)") |
|
] |
|
|
|
contamination_outputs = [ |
|
gr.Textbox(label="Front Left Contamination"), |
|
gr.Textbox(label="Front Right Contamination"), |
|
gr.Textbox(label="Left Contamination"), |
|
gr.Textbox(label="Right Contamination"), |
|
gr.Textbox(label="Roof Contamination"), |
|
gr.Textbox(label="Rear Contamination") |
|
] |
|
|
|
cleaning_time_outputs = [ |
|
gr.Textbox(label="Front Left Cleaning Time"), |
|
gr.Textbox(label="Front Right Cleaning Time"), |
|
gr.Textbox(label="Left Cleaning Time"), |
|
gr.Textbox(label="Right Cleaning Time"), |
|
gr.Textbox(label="Roof Cleaning Time"), |
|
gr.Textbox(label="Rear Cleaning Time") |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination & Cleaning Time Prediction</h1>") |
|
gr.Markdown("This application predicts the contamination levels, corresponding gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("### Input Parameters") |
|
for inp in inputs: |
|
inp.render() |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=0): |
|
gr.Image(image_path) |
|
|
|
gr.Button(value="Submit", variant="primary").click( |
|
fn=predict_and_plot, |
|
inputs=inputs, |
|
outputs=[gr.Plot(label="Contamination Levels Over Time")] + contamination_outputs + cleaning_time_outputs |
|
) |
|
gr.Button(value="Clear").click(fn=lambda: None) |
|
|
|
with gr.Column(): |
|
gr.Markdown("### Contamination Predictions") |
|
for out in contamination_outputs: |
|
out.render() |
|
|
|
with gr.Column(): |
|
gr.Markdown("### Cleaning Time Predictions") |
|
for out in cleaning_time_outputs: |
|
out.render() |
|
|
|
demo.launch() |
|
|