File size: 13,241 Bytes
b68fd83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import os
import pandas as pd
import requests
from PIL import Image, UnidentifiedImageError
from io import BytesIO
import matplotlib.pyplot as plt
import urllib3
from transformers import pipeline
from transformers import BitsAndBytesConfig
import torch
import textwrap
import pandas as pd
import numpy as np
from haversine import haversine  # Install haversine library: pip install haversine
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import BitsAndBytesConfig
import torch

from huggingface_hub import InferenceClient
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None

device = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"Using device: {device}")
print(f"low memory: {LOW_MEMORY}")
# Define BitsAndBytesConfig

# Ensure model is on the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)


model_id = "llava-hf/llava-1.5-7b-hf"

processor = AutoProcessor.from_pretrained(model_id)


model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, device_map="auto")
model.to(device)


import os
import requests

url = 'https://github.com/ruslanmv/watsonx-with-multimodal-llava/raw/master/geocoded_hotels.csv'
filename = 'geocoded_hotels.csv'

# Check if the file already exists
if not os.path.isfile(filename):
    response = requests.get(url)

    if response.status_code == 200:
        with open(filename, 'wb') as f:
            f.write(response.content)
        print(f"File {filename} downloaded successfully!")
    else:
        print(f"Error downloading file. Status code: {response.status_code}")
else:
    print(f"File {filename} already exists.")

import os
import pandas as pd
from datasets import load_dataset
import pyarrow

# 1. Get the Current Directory
current_directory = os.getcwd()

# 2. Construct the Full Path to the CSV File
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')

# 3. Check if the file exists
if not os.path.exists(csv_file_path):
    # If not, download the dataset
    print("File not found, downloading from Hugging Face...")

    dataset = load_dataset("ruslanmv/hotel-multimodal")

    # Convert the 'train' dataset to a DataFrame using .to_pandas()
    df_hotels = dataset['train'].to_pandas()

    # 4.Save to CSV
    df_hotels.to_csv(csv_file_path, index=False)
    print("Dataset downloaded and saved as CSV.")


# 5. Read the CSV file
df_hotels = pd.read_csv(csv_file_path)

print("DataFrame loaded:")
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
# Read the CSV file
geocoded_hotels = pd.read_csv(geocoded_hotels_path)

import requests

def get_current_location():
    try:
        response = requests.get('https://ipinfo.io/json')
        data = response.json()

        location = data.get('loc', '')
        if location:
            latitude, longitude = map(float, location.split(','))
            return latitude, longitude
        else:
            return None, None
    except Exception as e:
        print(f"An error occurred: {e}")
        return None, None

latitude, longitude = get_current_location()
if latitude and longitude:
    print(f"Current location: Latitude = {latitude}, Longitude = {longitude}")
else:
    print("Could not retrieve the current location.")


from geopy.geocoders import Nominatim

def get_coordinates(location_name):
    """Fetches latitude and longitude coordinates for a given location name.

    Args:
        location_name (str): The name of the location (e.g., "Rome, Italy").

    Returns:
        tuple: A tuple containing the latitude and longitude (float values),
               or None if the location is not found.
    """

    geolocator = Nominatim(user_agent="coordinate_finder")
    location = geolocator.geocode(location_name)

    if location:
        return location.latitude, location.longitude
    else:
        return None  # Location not found



def find_nearby(place=None):
    if place!=None:
        coordinates = get_coordinates(place)
        if coordinates:
            latitude, longitude = coordinates
            print(f"The coordinates of {place} are: Latitude: {latitude}, Longitude: {longitude}")
        else:
            print(f"Location not found: {place}")
    else:
        latitude, longitude = get_current_location()
        if latitude and longitude:
            print(f"Current location: Latitude = {latitude}, Longitude = {longitude}")
    # Load the geocoded_hotels DataFrame
    current_directory = os.getcwd()
    geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
    geocoded_hotels = pd.read_csv(geocoded_hotels_path)

    # Define input coordinates for the reference location
    reference_latitude = latitude
    reference_longitude = longitude

    # Haversine Distance Function
    def calculate_haversine_distance(lat1, lon1, lat2, lon2):
        """Calculates the Haversine distance between two points on the Earth's surface."""
        return haversine((lat1, lon1), (lat2, lon2))

    # Calculate distances to all other points in the DataFrame
    geocoded_hotels['distance_km'] = geocoded_hotels.apply(
        lambda row: calculate_haversine_distance(
            reference_latitude, reference_longitude, row['latitude'], row['longitude']
        ),
        axis=1
    )

    # Sort by distance and get the top 5 closest points
    closest_hotels = geocoded_hotels.sort_values(by='distance_km').head(5)

    # Display the results
    print("The 5 closest locations are:\n")
    print(closest_hotels)
    return closest_hotels

@spaces.GPU
# Define the respond function
def search_hotel(place=None):
    import os
    import pandas as pd
    import requests
    from PIL import Image, UnidentifiedImageError
    from io import BytesIO
    import urllib3
    from transformers import pipeline
    from transformers import BitsAndBytesConfig
    import torch

    # Suppress the InsecureRequestWarning
    urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

    # 1. Get the Current Directory
    current_directory = os.getcwd()
    # 2. Construct the Full Path to the CSV File
    csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')
    # Read the CSV file
    df_hotels = pd.read_csv(csv_file_path)
    geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
    # Read the CSV file
    geocoded_hotels = pd.read_csv(geocoded_hotels_path)

    # Assuming find_nearby function is defined elsewhere
    df_found = find_nearby(place)

    # Converting df_found[["hotel_id"]].values to a list
    hotel_ids = df_found["hotel_id"].values.tolist()

    # Extracting rows from df_hotels where hotel_id is in the list hotel_ids
    filtered_df = df_hotels[df_hotels['hotel_id'].isin(hotel_ids)]

    # Ordering filtered_df by the order of hotel_ids
    filtered_df['hotel_id'] = pd.Categorical(filtered_df['hotel_id'], categories=hotel_ids, ordered=True)
    filtered_df = filtered_df.sort_values('hotel_id').reset_index(drop=True)

    # Define the quantization config and model ID
    quantization_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.float16
    )

    model_id = "llava-hf/llava-1.5-7b-hf"

    # Initialize the pipeline
    pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})

    # Group by hotel_id and take the first 2 image URLs for each hotel
    grouped_df = filtered_df.groupby('hotel_id', observed=True).head(2)

    # Create a new DataFrame for storing image descriptions
    description_data = []

    # Download and generate descriptions for the images
    for index, row in grouped_df.iterrows():
        hotel_id = row['hotel_id']
        hotel_name = row['hotel_name']
        image_url = row['image_url']

        try:
            response = requests.get(image_url, verify=False)
            response.raise_for_status()  # Check for request errors
            img = Image.open(BytesIO(response.content))

            # Generate description for the image
            prompt = "USER: <image>\nAnalyze this image.  Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary  review.\nASSISTANT:"
            outputs = pipe(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
            description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()

            # Append data to the list
            description_data.append({
                'hotel_name': hotel_name,
                'hotel_id': hotel_id,
                'image': img,
                'description': description
            })
        except (requests.RequestException, UnidentifiedImageError):
            print(f"Skipping image at URL: {image_url}")

    # Create a DataFrame from the description data
    description_df = pd.DataFrame(description_data)
    return description_df


def show_hotels(place=None):
    description_df = search_hotel(place)

    # Calculate the number of rows needed
    num_images = len(description_df)
    num_rows = (num_images + 1) // 2  # Two images per row

    fig, axs = plt.subplots(num_rows * 2, 2, figsize=(20, 10 * num_rows))

    current_index = 0

    for _, row in description_df.iterrows():
        img = row['image']
        description = row['description']

        if img is None:  # Skip if the image is missing
            continue

        row_idx = (current_index // 2) * 2
        col_idx = current_index % 2

        # Plot the image
        axs[row_idx, col_idx].imshow(img)
        axs[row_idx, col_idx].axis('off')
        axs[row_idx, col_idx].set_title(f"{row['hotel_name']}\nHotel ID: {row['hotel_id']} Image {current_index + 1}", fontsize=16)

        # Wrap the description text
        wrapped_description = "\n".join(textwrap.wrap(description, width=50))

        # Plot the description
        axs[row_idx + 1, col_idx].text(0.5, 0.5, wrapped_description, ha='center', va='center', wrap=True, fontsize=14)
        axs[row_idx + 1, col_idx].axis('off')

        current_index += 1

    # Hide any unused subplots
    total_plots = (current_index + 1) // 2 * 2
    for j in range(current_index, total_plots * 2):
        row_idx = (j // 2) * 2
        col_idx = j % 2
        if row_idx < num_rows * 2:
            axs[row_idx, col_idx].axis('off')
        if row_idx + 1 < num_rows * 2:
            axs[row_idx + 1, col_idx].axis('off')

    plt.tight_layout()
    plt.show()

def grouped_description(description_df):

  # Group by 'hotel_id' and aggregate descriptions
  grouped_descriptions = description_df.groupby('hotel_id')['description'].apply(lambda x: ' '.join(x.astype(str))).reset_index()

  # Merge with original DataFrame to get hotel names
  result_df = pd.merge(grouped_descriptions, description_df[['hotel_id', 'hotel_name']], on='hotel_id', how='left')

  # Drop duplicates and keep only the first occurrence of each hotel_id
  result_df = result_df.drop_duplicates(subset='hotel_id', keep='first')

  # Reorder columns
  result_df = result_df[['hotel_name', 'hotel_id', 'description']]
  return result_df

# prompt: please create a new python function that given the result_df as an input create a single prompt where  for given hotel_name you append the hotel_id and description , such we can use later this as context for a future llm query

def create_prompt_result(result_df):
  prompt = ""
  for _, row in result_df.iterrows():
    hotel_name = row['hotel_name']
    hotel_id = row['hotel_id']
    description = row['description']
    prompt += f"Hotel Name: {hotel_name}\nHotel ID: {hotel_id}\nDescription: {description}\n\n"
  return prompt
from transformers import pipeline, BitsAndBytesConfig
import torch
from langchain import PromptTemplate

# Create a LangChain prompt template for the hotel recommendation
hotel_recommendation_template = """
<s>[INST] <<SYS>>
You are a helpful and informative chatbot assistant.
<</SYS>>
Based on the following hotel descriptions, recommend the best hotel:
{context_result}
[/INST]
"""
@spaces.GPU
# Define the respond function
# Use LangChain to create a prompt based on the template
def build_prompt(context_result):
    prompt_template = PromptTemplate(template=hotel_recommendation_template)
    return prompt_template.format(context_result=context_result)

# Quantization configuration for efficient model loading
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

# Initialize the text generation pipeline
pipe_text = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2",
                     model_kwargs={"quantization_config": quantization_config})

def generate_text_response(prompt):
    outputs = pipe_text(prompt, max_new_tokens=500)
    # Extract only the response after the instruction token
    response = outputs[0]['generated_text'].split("[/INST]")[-1].strip()
    return response
#place='Genova Italia'
#show_hotels(place)