File size: 13,241 Bytes
b68fd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import os
import pandas as pd
import requests
from PIL import Image, UnidentifiedImageError
from io import BytesIO
import matplotlib.pyplot as plt
import urllib3
from transformers import pipeline
from transformers import BitsAndBytesConfig
import torch
import textwrap
import pandas as pd
import numpy as np
from haversine import haversine # Install haversine library: pip install haversine
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import BitsAndBytesConfig
import torch
from huggingface_hub import InferenceClient
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
device = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"Using device: {device}")
print(f"low memory: {LOW_MEMORY}")
# Define BitsAndBytesConfig
# Ensure model is on the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model_id = "llava-hf/llava-1.5-7b-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, device_map="auto")
model.to(device)
import os
import requests
url = 'https://github.com/ruslanmv/watsonx-with-multimodal-llava/raw/master/geocoded_hotels.csv'
filename = 'geocoded_hotels.csv'
# Check if the file already exists
if not os.path.isfile(filename):
response = requests.get(url)
if response.status_code == 200:
with open(filename, 'wb') as f:
f.write(response.content)
print(f"File {filename} downloaded successfully!")
else:
print(f"Error downloading file. Status code: {response.status_code}")
else:
print(f"File {filename} already exists.")
import os
import pandas as pd
from datasets import load_dataset
import pyarrow
# 1. Get the Current Directory
current_directory = os.getcwd()
# 2. Construct the Full Path to the CSV File
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')
# 3. Check if the file exists
if not os.path.exists(csv_file_path):
# If not, download the dataset
print("File not found, downloading from Hugging Face...")
dataset = load_dataset("ruslanmv/hotel-multimodal")
# Convert the 'train' dataset to a DataFrame using .to_pandas()
df_hotels = dataset['train'].to_pandas()
# 4.Save to CSV
df_hotels.to_csv(csv_file_path, index=False)
print("Dataset downloaded and saved as CSV.")
# 5. Read the CSV file
df_hotels = pd.read_csv(csv_file_path)
print("DataFrame loaded:")
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
# Read the CSV file
geocoded_hotels = pd.read_csv(geocoded_hotels_path)
import requests
def get_current_location():
try:
response = requests.get('https://ipinfo.io/json')
data = response.json()
location = data.get('loc', '')
if location:
latitude, longitude = map(float, location.split(','))
return latitude, longitude
else:
return None, None
except Exception as e:
print(f"An error occurred: {e}")
return None, None
latitude, longitude = get_current_location()
if latitude and longitude:
print(f"Current location: Latitude = {latitude}, Longitude = {longitude}")
else:
print("Could not retrieve the current location.")
from geopy.geocoders import Nominatim
def get_coordinates(location_name):
"""Fetches latitude and longitude coordinates for a given location name.
Args:
location_name (str): The name of the location (e.g., "Rome, Italy").
Returns:
tuple: A tuple containing the latitude and longitude (float values),
or None if the location is not found.
"""
geolocator = Nominatim(user_agent="coordinate_finder")
location = geolocator.geocode(location_name)
if location:
return location.latitude, location.longitude
else:
return None # Location not found
def find_nearby(place=None):
if place!=None:
coordinates = get_coordinates(place)
if coordinates:
latitude, longitude = coordinates
print(f"The coordinates of {place} are: Latitude: {latitude}, Longitude: {longitude}")
else:
print(f"Location not found: {place}")
else:
latitude, longitude = get_current_location()
if latitude and longitude:
print(f"Current location: Latitude = {latitude}, Longitude = {longitude}")
# Load the geocoded_hotels DataFrame
current_directory = os.getcwd()
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
geocoded_hotels = pd.read_csv(geocoded_hotels_path)
# Define input coordinates for the reference location
reference_latitude = latitude
reference_longitude = longitude
# Haversine Distance Function
def calculate_haversine_distance(lat1, lon1, lat2, lon2):
"""Calculates the Haversine distance between two points on the Earth's surface."""
return haversine((lat1, lon1), (lat2, lon2))
# Calculate distances to all other points in the DataFrame
geocoded_hotels['distance_km'] = geocoded_hotels.apply(
lambda row: calculate_haversine_distance(
reference_latitude, reference_longitude, row['latitude'], row['longitude']
),
axis=1
)
# Sort by distance and get the top 5 closest points
closest_hotels = geocoded_hotels.sort_values(by='distance_km').head(5)
# Display the results
print("The 5 closest locations are:\n")
print(closest_hotels)
return closest_hotels
@spaces.GPU
# Define the respond function
def search_hotel(place=None):
import os
import pandas as pd
import requests
from PIL import Image, UnidentifiedImageError
from io import BytesIO
import urllib3
from transformers import pipeline
from transformers import BitsAndBytesConfig
import torch
# Suppress the InsecureRequestWarning
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
# 1. Get the Current Directory
current_directory = os.getcwd()
# 2. Construct the Full Path to the CSV File
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')
# Read the CSV file
df_hotels = pd.read_csv(csv_file_path)
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
# Read the CSV file
geocoded_hotels = pd.read_csv(geocoded_hotels_path)
# Assuming find_nearby function is defined elsewhere
df_found = find_nearby(place)
# Converting df_found[["hotel_id"]].values to a list
hotel_ids = df_found["hotel_id"].values.tolist()
# Extracting rows from df_hotels where hotel_id is in the list hotel_ids
filtered_df = df_hotels[df_hotels['hotel_id'].isin(hotel_ids)]
# Ordering filtered_df by the order of hotel_ids
filtered_df['hotel_id'] = pd.Categorical(filtered_df['hotel_id'], categories=hotel_ids, ordered=True)
filtered_df = filtered_df.sort_values('hotel_id').reset_index(drop=True)
# Define the quantization config and model ID
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
model_id = "llava-hf/llava-1.5-7b-hf"
# Initialize the pipeline
pipe = pipeline("image-to-text", model=model_id, model_kwargs={"quantization_config": quantization_config})
# Group by hotel_id and take the first 2 image URLs for each hotel
grouped_df = filtered_df.groupby('hotel_id', observed=True).head(2)
# Create a new DataFrame for storing image descriptions
description_data = []
# Download and generate descriptions for the images
for index, row in grouped_df.iterrows():
hotel_id = row['hotel_id']
hotel_name = row['hotel_name']
image_url = row['image_url']
try:
response = requests.get(image_url, verify=False)
response.raise_for_status() # Check for request errors
img = Image.open(BytesIO(response.content))
# Generate description for the image
prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
outputs = pipe(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()
# Append data to the list
description_data.append({
'hotel_name': hotel_name,
'hotel_id': hotel_id,
'image': img,
'description': description
})
except (requests.RequestException, UnidentifiedImageError):
print(f"Skipping image at URL: {image_url}")
# Create a DataFrame from the description data
description_df = pd.DataFrame(description_data)
return description_df
def show_hotels(place=None):
description_df = search_hotel(place)
# Calculate the number of rows needed
num_images = len(description_df)
num_rows = (num_images + 1) // 2 # Two images per row
fig, axs = plt.subplots(num_rows * 2, 2, figsize=(20, 10 * num_rows))
current_index = 0
for _, row in description_df.iterrows():
img = row['image']
description = row['description']
if img is None: # Skip if the image is missing
continue
row_idx = (current_index // 2) * 2
col_idx = current_index % 2
# Plot the image
axs[row_idx, col_idx].imshow(img)
axs[row_idx, col_idx].axis('off')
axs[row_idx, col_idx].set_title(f"{row['hotel_name']}\nHotel ID: {row['hotel_id']} Image {current_index + 1}", fontsize=16)
# Wrap the description text
wrapped_description = "\n".join(textwrap.wrap(description, width=50))
# Plot the description
axs[row_idx + 1, col_idx].text(0.5, 0.5, wrapped_description, ha='center', va='center', wrap=True, fontsize=14)
axs[row_idx + 1, col_idx].axis('off')
current_index += 1
# Hide any unused subplots
total_plots = (current_index + 1) // 2 * 2
for j in range(current_index, total_plots * 2):
row_idx = (j // 2) * 2
col_idx = j % 2
if row_idx < num_rows * 2:
axs[row_idx, col_idx].axis('off')
if row_idx + 1 < num_rows * 2:
axs[row_idx + 1, col_idx].axis('off')
plt.tight_layout()
plt.show()
def grouped_description(description_df):
# Group by 'hotel_id' and aggregate descriptions
grouped_descriptions = description_df.groupby('hotel_id')['description'].apply(lambda x: ' '.join(x.astype(str))).reset_index()
# Merge with original DataFrame to get hotel names
result_df = pd.merge(grouped_descriptions, description_df[['hotel_id', 'hotel_name']], on='hotel_id', how='left')
# Drop duplicates and keep only the first occurrence of each hotel_id
result_df = result_df.drop_duplicates(subset='hotel_id', keep='first')
# Reorder columns
result_df = result_df[['hotel_name', 'hotel_id', 'description']]
return result_df
# prompt: please create a new python function that given the result_df as an input create a single prompt where for given hotel_name you append the hotel_id and description , such we can use later this as context for a future llm query
def create_prompt_result(result_df):
prompt = ""
for _, row in result_df.iterrows():
hotel_name = row['hotel_name']
hotel_id = row['hotel_id']
description = row['description']
prompt += f"Hotel Name: {hotel_name}\nHotel ID: {hotel_id}\nDescription: {description}\n\n"
return prompt
from transformers import pipeline, BitsAndBytesConfig
import torch
from langchain import PromptTemplate
# Create a LangChain prompt template for the hotel recommendation
hotel_recommendation_template = """
<s>[INST] <<SYS>>
You are a helpful and informative chatbot assistant.
<</SYS>>
Based on the following hotel descriptions, recommend the best hotel:
{context_result}
[/INST]
"""
@spaces.GPU
# Define the respond function
# Use LangChain to create a prompt based on the template
def build_prompt(context_result):
prompt_template = PromptTemplate(template=hotel_recommendation_template)
return prompt_template.format(context_result=context_result)
# Quantization configuration for efficient model loading
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
# Initialize the text generation pipeline
pipe_text = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2",
model_kwargs={"quantization_config": quantization_config})
def generate_text_response(prompt):
outputs = pipe_text(prompt, max_new_tokens=500)
# Extract only the response after the instruction token
response = outputs[0]['generated_text'].split("[/INST]")[-1].strip()
return response
#place='Genova Italia'
#show_hotels(place) |