File size: 8,085 Bytes
b68fd83
 
 
 
 
 
 
c28812c
b68fd83
 
c28812c
 
b68fd83
1af352e
 
 
b68fd83
c28812c
 
b68fd83
c28812c
 
b68fd83
c28812c
 
 
b68fd83
c28812c
b68fd83
 
 
 
 
c28812c
 
 
 
b68fd83
c28812c
 
b68fd83
c28812c
 
 
 
b68fd83
c28812c
 
 
b68fd83
 
c28812c
b68fd83
c28812c
b68fd83
 
 
c28812c
 
b68fd83
c28812c
b68fd83
 
 
 
 
c28812c
 
b68fd83
 
 
 
 
 
 
c28812c
b68fd83
 
 
 
 
 
 
 
 
 
 
 
c28812c
b68fd83
 
c28812c
b68fd83
 
 
 
 
 
c28812c
b68fd83
 
c28812c
 
 
 
b68fd83
c28812c
b68fd83
 
c28812c
b68fd83
 
 
 
 
 
 
 
 
c28812c
 
b68fd83
 
 
 
 
 
 
 
 
 
 
 
 
 
c28812c
b68fd83
 
c28812c
 
b68fd83
 
c28812c
b68fd83
 
 
c28812c
b68fd83
 
 
c28812c
 
 
b68fd83
c28812c
b68fd83
 
 
 
 
 
 
 
c28812c
b68fd83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c28812c
 
 
 
 
b68fd83
 
c28812c
 
 
 
 
 
 
b68fd83
c28812c
 
b68fd83
 
 
 
 
 
 
c28812c
b68fd83
 
 
 
 
c28812c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import pandas as pd
import requests
from PIL import Image, UnidentifiedImageError
from io import BytesIO
import matplotlib.pyplot as plt
import urllib3
from transformers import pipeline, BitsAndBytesConfig
import torch
import textwrap
from haversine import haversine
from geopy.geocoders import Nominatim
from huggingface_hub import InferenceClient
import os
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None

# Constants
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
MODEL_ID = "llava-hf/llava-1.5-7b-hf"
TEXT_MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2"

# Print device and memory info
print(f"Using device: {DEVICE}")
print(f"Low memory: {LOW_MEMORY}")

# Quantization configuration for efficient model loading
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

# Load models only once
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = LlavaForConditionalGeneration.from_pretrained(MODEL_ID, quantization_config=quantization_config, device_map="auto").to(DEVICE)
pipe_image_to_text = pipeline("image-to-text", model=model, model_kwargs={"quantization_config": quantization_config})

# Initialize the text generation pipeline
pipe_text = pipeline("text-generation", model=TEXT_MODEL_ID, model_kwargs={"quantization_config": quantization_config})

# Ensure data files are available
current_directory = os.getcwd()
geocoded_hotels_path = os.path.join(current_directory, 'geocoded_hotels.csv')
csv_file_path = os.path.join(current_directory, 'hotel_multimodal.csv')

# Load geocoded hotels data
if not os.path.isfile(geocoded_hotels_path):
    url = 'https://github.com/ruslanmv/watsonx-with-multimodal-llava/raw/master/geocoded_hotels.csv'
    response = requests.get(url)
    if response.status_code == 200:
        with open(geocoded_hotels_path, 'wb') as f:
            f.write(response.content)
        print(f"File {geocoded_hotels_path} downloaded successfully!")
    else:
        print(f"Error downloading file. Status code: {response.status_code}")
else:
    print(f"File {geocoded_hotels_path} already exists.")
geocoded_hotels = pd.read_csv(geocoded_hotels_path)

# Load hotel dataset
if not os.path.exists(csv_file_path):
    dataset = load_dataset("ruslanmv/hotel-multimodal")
    df_hotels = dataset['train'].to_pandas()
    df_hotels.to_csv(csv_file_path, index=False)
    print("Dataset downloaded and saved as CSV.")
else:
    df_hotels = pd.read_csv(csv_file_path)

def get_current_location():
    try:
        response = requests.get('https://ipinfo.io/json')
        data = response.json()
        location = data.get('loc', '')
        if location:
            return map(float, location.split(','))
        else:
            return None, None
    except Exception as e:
        print(f"An error occurred: {e}")
        return None, None

def get_coordinates(location_name):
    geolocator = Nominatim(user_agent="coordinate_finder")
    location = geolocator.geocode(location_name)
    if location:
        return location.latitude, location.longitude
    else:
        return None

def find_nearby(place=None):
    if place:
        coordinates = get_coordinates(place)
        if coordinates:
            latitude, longitude = coordinates
            print(f"The coordinates of {place} are: Latitude: {latitude}, Longitude: {longitude}")
        else:
            print(f"Location not found: {place}")
            return None
    else:
        latitude, longitude = get_current_location()
        if not latitude or not longitude:
            print("Could not retrieve the current location.")
            return None
    
    geocoded_hotels['distance_km'] = geocoded_hotels.apply(
        lambda row: haversine((latitude, longitude), (row['latitude'], row['longitude'])),
        axis=1
    )
    
    closest_hotels = geocoded_hotels.sort_values(by='distance_km').head(5)
    print("The 5 closest locations are:\n")
    print(closest_hotels)
    return closest_hotels

@spaces.GPU
# Define the respond function
def search_hotel(place=None):
    df_found = find_nearby(place)
    if df_found is None:
        return pd.DataFrame()
    hotel_ids = df_found["hotel_id"].values.tolist()
    filtered_df = df_hotels[df_hotels['hotel_id'].isin(hotel_ids)]
    filtered_df['hotel_id'] = pd.Categorical(filtered_df['hotel_id'], categories=hotel_ids, ordered=True)
    filtered_df = filtered_df.sort_values('hotel_id').reset_index(drop=True)
    grouped_df = filtered_df.groupby('hotel_id', observed=True).head(2)
    description_data = []

    for index, row in grouped_df.iterrows():
        hotel_id = row['hotel_id']
        hotel_name = row['hotel_name']
        image_url = row['image_url']

        try:
            response = requests.get(image_url, verify=False)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content))

            prompt = "USER: <image>\nAnalyze this image. Give me feedback on whether this hotel is worth visiting based on the picture. Provide a summary review.\nASSISTANT:"
            outputs = pipe_image_to_text(img, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
            description = outputs[0]["generated_text"].split("\nASSISTANT:")[-1].strip()

            description_data.append({'hotel_name': hotel_name, 'hotel_id': hotel_id, 'image': img, 'description': description})
        except (requests.RequestException, UnidentifiedImageError):
            print(f"Skipping image at URL: {image_url}")

    return pd.DataFrame(description_data)

def show_hotels(place=None):
    description_df = search_hotel(place)
    if description_df.empty:
        print("No hotels found.")
        return
    num_images = len(description_df)
    num_rows = (num_images + 1) // 2

    fig, axs = plt.subplots(num_rows * 2, 2, figsize=(20, 10 * num_rows))

    current_index = 0
    for _, row in description_df.iterrows():
        img = row['image']
        description = row['description']

        if img is None:
            continue

        row_idx = (current_index // 2) * 2
        col_idx = current_index % 2

        axs[row_idx, col_idx].imshow(img)
        axs[row_idx, col_idx].axis('off')
        axs[row_idx, col_idx].set_title(f"{row['hotel_name']}\nHotel ID: {row['hotel_id']} Image {current_index + 1}", fontsize=16)

        wrapped_description = "\n".join(textwrap.wrap(description, width=50))
        axs[row_idx + 1, col_idx].text(0.5, 0.5, wrapped_description, ha='center', va='center', wrap=True, fontsize=14)
        axs[row_idx + 1, col_idx].axis('off')

        current_index += 1

    plt.tight_layout()
    plt.show()

def grouped_description(description_df):
    grouped_descriptions = description_df.groupby('hotel_id')['description'].apply(lambda x: ' '.join(x.astype(str))).reset_index()
    result_df = pd.merge(grouped_descriptions, description_df[['hotel_id', 'hotel_name']], on='hotel_id', how='left')
    result_df = result_df.drop_duplicates(subset='hotel_id', keep='first')
    result_df = result_df[['hotel_name', 'hotel_id', 'description']]
    return result_df

def create_prompt_result(result_df):
    prompt = ""
    for _, row in result_df.iterrows():
        hotel_name = row['hotel_name']
        hotel_id = row['hotel_id']
        description = row['description']
        prompt += f"Hotel Name: {hotel_name}\nHotel ID: {hotel_id}\nDescription: {description}\n\n"
    return prompt

def build_prompt(context_result):
    hotel_recommendation_template = """
<s>[INST] <<SYS>>
You are a helpful and informative chatbot assistant.
<</SYS>>
Based on the following hotel descriptions, recommend the best hotel:
{context_result}
[/INST]
"""
    return hotel_recommendation_template.format(context_result=context_result)
@spaces.GPU
# Define the respond function
def generate_text_response(prompt):
    outputs = pipe_text(prompt, max_new_tokens=500)
    response = outputs[0]['generated_text'].split("[/INST]")[-1].strip()
    return response