ruslanmv's picture
First commit
9c3c737
raw
history blame
14.8 kB
from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Vision model imports
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import random
from themes.research_monochrome import theme
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002
SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024.
Today's Date: {today_date}.
You are Granite, developed by IBM. You are a helpful AI assistant"""
TITLE = "IBM Granite 3.1 8b Instruct & Vision Preview"
DESCRIPTION = """
<p>Granite 3.1 8b instruct is an open-source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision-language capabilities. Start with one of the sample prompts
or enter your own. Upload an image to use the vision model. Keep in mind that AI can occasionally make mistakes.
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/docs/">View Granite Instruct Documentation <i class="fa fa-external-link"></i></a>
</span>
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/vision/docs/">View Granite Vision Documentation <i class="fa fa-external-link"></i></a>
</span>
</p>
"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128
if not torch.cuda.is_available():
print("This demo may not work on CPU.")
# Text model loading
text_model = AutoModelForCausalLM.from_pretrained(
"ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto"
)
text_tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct")
text_tokenizer.use_default_system_prompt = False
# Vision model loading
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(vision_model_path, torch_dtype="auto", device_map="auto")
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
temperature: float = TEMPERATURE,
repetition_penalty: float = REPETITION_PENALTY,
top_p: float = TOP_P,
top_k: float = TOP_K,
max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
"""Generate function for text chat demo."""
# Build messages
conversation = []
conversation.append({"role": "system", "content": SYS_PROMPT})
conversation += chat_history
conversation.append({"role": "user", "content": message})
# Convert messages to prompt format
input_ids = text_tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
)
input_ids = input_ids.to(text_model.device)
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=text_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def get_text_from_content(content):
texts = []
for item in content:
if item["type"] == "text":
texts.append(item["text"])
elif item["type"] == "image":
texts.append("[Image]")
return " ".join(texts)
@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
if conversation is None:
conversation = []
user_content = []
if image is not None:
user_content.append({"type": "image", "image": image})
if text and text.strip():
user_content.append({"type": "text", "text": text.strip()})
if not user_content:
return conversation_display(conversation), conversation
conversation.append({
"role": "user",
"content": user_content
})
inputs = vision_processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to("cuda")
torch.manual_seed(random.randint(0, 10000))
generation_kwargs = {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": True,
}
output = vision_model.generate(**inputs, **generation_kwargs)
assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
conversation.append({
"role": "assistant",
"content": [{"type": "text", "text": assistant_response.strip()}]
})
return conversation_display(conversation), conversation
def conversation_display(conversation):
chat_history = []
for msg in conversation:
if msg["role"] == "user":
user_text = get_text_from_content(msg["content"])
chat_history.append({"role": "user", "content": user_text})
elif msg["role"] == "assistant":
assistant_text = msg["content"][0]["text"].split("<|assistant|>")[-1].strip()
chat_history.append({"role": "assistant", "content": assistant_text})
return chat_history
def clear_chat():
return [], [], "", None, [] # Cleared state for both text and vision
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")
# Advanced settings (displayed in Accordion) - Text Model
text_temperature_slider = gr.Slider(
minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Text Temperature", elem_classes=["gr_accordion_element"]
)
text_top_p_slider = gr.Slider(
minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Text Top P", elem_classes=["gr_accordion_element"]
)
text_top_k_slider = gr.Slider(
minimum=0, maximum=100, value=TOP_K, step=1, label="Text Top K", elem_classes=["gr_accordion_element"]
)
text_repetition_penalty_slider = gr.Slider(
minimum=0,
maximum=2.0,
value=REPETITION_PENALTY,
step=0.05,
label="Text Repetition Penalty",
elem_classes=["gr_accordion_element"],
)
text_max_new_tokens_slider = gr.Slider(
minimum=1,
maximum=2000,
value=MAX_NEW_TOKENS,
step=1,
label="Text Max New Tokens",
elem_classes=["gr_accordion_element"],
)
text_chat_interface_accordion = gr.Accordion(label="Text Model Advanced Settings", open=False)
# Advanced settings (displayed in Accordion) - Vision Model
vision_temperature_slider = gr.Slider(
minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"]
)
vision_top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"]
)
vision_top_k_slider = gr.Slider(
minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"]
)
vision_max_tokens_slider = gr.Slider(
minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"]
)
vision_chat_interface_accordion = gr.Accordion(label="Vision Model Advanced Settings", open=False)
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
gr.HTML(DESCRIPTION)
chatbot = gr.Chatbot(label="Chat History", elem_id="chatbot", height=500, type='messages')
text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
image_input = gr.Image(type="pil", label="Upload Image (optional)")
with text_chat_interface_accordion:
text_temperature_slider
text_top_p_slider
text_top_k_slider
text_repetition_penalty_slider
text_max_new_tokens_slider
with vision_chat_interface_accordion:
vision_temperature_slider
vision_top_p_slider
vision_top_k_slider
vision_max_tokens_slider
clear_button = gr.Button("Clear Chat")
send_button = gr.Button("Send Message") # Changed from "Chat" to "Send Message" for clarity
text_state = gr.State([]) # State for text chatbot history
vision_state = gr.State([]) # State for vision chatbot history
chatbot_type_state = gr.State("text") # State to track which chatbot is in use
def send_message(image_input, text_input, chatbot_type_state, text_state, vision_state,
text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
vision_temperature, vision_top_p, vision_top_k, vision_max_tokens):
if image_input:
chatbot_type_state = "vision"
history = vision_state
gen_kwargs_vision = {
"temperature": vision_temperature,
"top_p": vision_top_p,
"top_k": vision_top_k,
"max_tokens": vision_max_tokens,
"conversation": history
}
chat_output, updated_vision_state = chat_inference(image=image_input, text=text_input, **gen_kwargs_vision)
return chat_output, updated_vision_state, chatbot_type_state, gr.ChatInterface.update(visible=False), gr.Chatbot.update(visible=True) # Hide text interface, show vision chatbot
else:
chatbot_type_state = "text"
history = text_state
gen_kwargs_text = {
"temperature": text_temperature,
"repetition_penalty": text_repetition_penalty,
"top_p": text_top_p,
"top_k": text_top_k,
"max_new_tokens": text_max_new_tokens,
"message": text_input,
"chat_history": history
}
chat_output_iterator = generate(**gen_kwargs_text)
output_text = ""
for text_chunk in chat_output_iterator:
output_text = text_chunk
updated_text_state = history + [{"role": "user", "content": text_input}, {"role": "assistant", "content": output_text}]
text_chatbot_history = updated_text_state # format for chatbot display
formatted_history = []
for message in text_chatbot_history:
formatted_history.append((message["content"] if message["role"] == "user" else None, message["content"] if message["role"] == "assistant" else None))
return formatted_history, updated_text_state, chatbot_type_state, gr.ChatInterface.update(visible=True), gr.Chatbot.update(visible=False) # Show text interface, hide vision chatbot
send_button.click(
send_message,
inputs=[image_input, text_input, chatbot_type_state, text_state, vision_state,
text_temperature_slider, text_repetition_penalty_slider, text_top_p_slider, text_top_k_slider, text_max_new_tokens_slider,
vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider],
outputs=[chatbot, vision_state, chatbot_type_state, gr.ChatInterface(), gr.Chatbot()] # Dummy ChatInterface output, real Chatbot output
)
clear_button.click(
clear_chat,
inputs=None,
outputs=[chatbot, vision_state, text_input, image_input, text_state] # Added text_state to clear
)
gr.Examples(
examples=[
["Explain the concept of quantum computing to someone with no background in physics or computer science.", None],
["What is OpenShift?", None],
["What's the importance of low latency inference?", None],
["Help me boost productivity habits.", None],
[
"""Explain the following code in a concise manner:
```java
import java.util.ArrayList;
import java.util.List;
public class Main {
public static void main(String[] args) {
int[] arr = {1, 5, 3, 4, 2};
int diff = 3;
List<Pair> pairs = findPairs(arr, diff);
for (Pair pair : pairs) {
System.out.println(pair.x + " " + pair.y);
}
}
public static List<Pair> findPairs(int[] arr, int diff) {
List<Pair> pairs = new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
for (int j = i + 1; j < arr.length; j++) {
if (Math.abs(arr[i] - arr[j]) < diff) {
pairs.add(new Pair(arr[i], arr[j]));
}
}
}
return pairs;
}
}
class Pair {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
```""", None
],
[
"""Generate a Java code block from the following explanation:
The code in the Main class finds all pairs in an array whose absolute difference is less than a given value.
The findPairs method takes two arguments: an array of integers and a difference value. It iterates over the array and compares each element to every other element in the array. If the absolute difference between the two elements is less than the difference value, a new Pair object is created and added to a list.
The Pair class is a simple data structure that stores two integers.
The main method creates an array of integers, initializes the difference value, and calls the findPairs method to find all pairs in the array. Finally, the code iterates over the list of pairs and prints each pair to the console.""" , None # noqa: E501
],
["What is in this image?", "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"] # Vision example
],
inputs=[text_input, image_input],
example_labels=[
"Explain quantum computing",
"What is OpenShift?",
"Importance of low latency inference",
"Boosting productivity habits",
"Explain and document your code",
"Generate Java Code",
"Vision Example: What is in this image?"
],
cache_examples=False,
)
if __name__ == "__main__":
demo.queue().launch()