File size: 14,751 Bytes
9c3c737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

# Vision model imports
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import random

from themes.research_monochrome import theme

today_date = datetime.today().strftime("%B %-d, %Y")  # noqa: DTZ002

SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024.
Today's Date: {today_date}.
You are Granite, developed by IBM. You are a helpful AI assistant"""
TITLE = "IBM Granite 3.1 8b Instruct & Vision Preview"
DESCRIPTION = """
<p>Granite 3.1 8b instruct is an open-source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision-language capabilities. Start with one of the sample prompts
or enter your own. Upload an image to use the vision model. Keep in mind that AI can occasionally make mistakes.
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/docs/">View Granite Instruct Documentation <i class="fa fa-external-link"></i></a>
</span>
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/vision/docs/">View Granite Vision Documentation <i class="fa fa-external-link"></i></a>
</span>
</p>
"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05

VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128


if not torch.cuda.is_available():
    print("This demo may not work on CPU.")

# Text model loading
text_model = AutoModelForCausalLM.from_pretrained(
    "ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto"
)
text_tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct")
text_tokenizer.use_default_system_prompt = False

# Vision model loading
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(vision_model_path, torch_dtype="auto", device_map="auto")


@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    temperature: float = TEMPERATURE,
    repetition_penalty: float = REPETITION_PENALTY,
    top_p: float = TOP_P,
    top_k: float = TOP_K,
    max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
    """Generate function for text chat demo."""
    # Build messages
    conversation = []
    conversation.append({"role": "system", "content": SYS_PROMPT})
    conversation += chat_history
    conversation.append({"role": "user", "content": message})

    # Convert messages to prompt format
    input_ids = text_tokenizer.apply_chat_template(
        conversation,
        return_tensors="pt",
        add_generation_prompt=True,
        truncation=True,
        max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
    )

    input_ids = input_ids.to(text_model.device)
    streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )

    t = Thread(target=text_model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


def get_text_from_content(content):
    texts = []
    for item in content:
        if item["type"] == "text":
            texts.append(item["text"])
        elif item["type"] == "image":
            texts.append("[Image]")
    return " ".join(texts)

@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
    if conversation is None:
        conversation = []

    user_content = []
    if image is not None:
        user_content.append({"type": "image", "image": image})
    if text and text.strip():
        user_content.append({"type": "text", "text": text.strip()})
    if not user_content:
        return conversation_display(conversation), conversation

    conversation.append({
        "role": "user",
        "content": user_content
    })

    inputs = vision_processor.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    ).to("cuda")

    torch.manual_seed(random.randint(0, 10000))

    generation_kwargs = {
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "do_sample": True,
    }

    output = vision_model.generate(**inputs, **generation_kwargs)
    assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)

    conversation.append({
        "role": "assistant",
        "content": [{"type": "text", "text": assistant_response.strip()}]
    })

    return conversation_display(conversation), conversation

def conversation_display(conversation):
    chat_history = []
    for msg in conversation:
        if msg["role"] == "user":
            user_text = get_text_from_content(msg["content"])
            chat_history.append({"role": "user", "content": user_text})
        elif msg["role"] == "assistant":
            assistant_text = msg["content"][0]["text"].split("<|assistant|>")[-1].strip()
            chat_history.append({"role": "assistant", "content": assistant_text})
    return chat_history

def clear_chat():
    return [], [], "", None, [] # Cleared state for both text and vision

css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")

# Advanced settings (displayed in Accordion) - Text Model
text_temperature_slider = gr.Slider(
    minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Text Temperature", elem_classes=["gr_accordion_element"]
)
text_top_p_slider = gr.Slider(
    minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Text Top P", elem_classes=["gr_accordion_element"]
)
text_top_k_slider = gr.Slider(
    minimum=0, maximum=100, value=TOP_K, step=1, label="Text Top K", elem_classes=["gr_accordion_element"]
)
text_repetition_penalty_slider = gr.Slider(
    minimum=0,
    maximum=2.0,
    value=REPETITION_PENALTY,
    step=0.05,
    label="Text Repetition Penalty",
    elem_classes=["gr_accordion_element"],
)
text_max_new_tokens_slider = gr.Slider(
    minimum=1,
    maximum=2000,
    value=MAX_NEW_TOKENS,
    step=1,
    label="Text Max New Tokens",
    elem_classes=["gr_accordion_element"],
)
text_chat_interface_accordion = gr.Accordion(label="Text Model Advanced Settings", open=False)

# Advanced settings (displayed in Accordion) - Vision Model
vision_temperature_slider = gr.Slider(
    minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"]
)
vision_top_p_slider = gr.Slider(
    minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"]
)
vision_top_k_slider = gr.Slider(
    minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"]
)
vision_max_tokens_slider = gr.Slider(
    minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"]
)
vision_chat_interface_accordion = gr.Accordion(label="Vision Model Advanced Settings", open=False)


with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
    gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
    gr.HTML(DESCRIPTION)

    chatbot = gr.Chatbot(label="Chat History", elem_id="chatbot", height=500, type='messages')
    text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
    image_input = gr.Image(type="pil", label="Upload Image (optional)")

    with text_chat_interface_accordion:
        text_temperature_slider
        text_top_p_slider
        text_top_k_slider
        text_repetition_penalty_slider
        text_max_new_tokens_slider

    with vision_chat_interface_accordion:
        vision_temperature_slider
        vision_top_p_slider
        vision_top_k_slider
        vision_max_tokens_slider


    clear_button = gr.Button("Clear Chat")
    send_button = gr.Button("Send Message") # Changed from "Chat" to "Send Message" for clarity

    text_state = gr.State([]) # State for text chatbot history
    vision_state = gr.State([]) # State for vision chatbot history
    chatbot_type_state = gr.State("text") # State to track which chatbot is in use

    def send_message(image_input, text_input, chatbot_type_state, text_state, vision_state,
                     text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
                     vision_temperature, vision_top_p, vision_top_k, vision_max_tokens):
        if image_input:
            chatbot_type_state = "vision"
            history = vision_state
            gen_kwargs_vision = {
                "temperature": vision_temperature,
                "top_p": vision_top_p,
                "top_k": vision_top_k,
                "max_tokens": vision_max_tokens,
                "conversation": history
            }
            chat_output, updated_vision_state = chat_inference(image=image_input, text=text_input, **gen_kwargs_vision)
            return chat_output, updated_vision_state, chatbot_type_state, gr.ChatInterface.update(visible=False), gr.Chatbot.update(visible=True) # Hide text interface, show vision chatbot

        else:
            chatbot_type_state = "text"
            history = text_state
            gen_kwargs_text = {
                "temperature": text_temperature,
                "repetition_penalty": text_repetition_penalty,
                "top_p": text_top_p,
                "top_k": text_top_k,
                "max_new_tokens": text_max_new_tokens,
                "message": text_input,
                "chat_history": history
            }

            chat_output_iterator = generate(**gen_kwargs_text)
            output_text = ""
            for text_chunk in chat_output_iterator:
                output_text = text_chunk

            updated_text_state = history + [{"role": "user", "content": text_input}, {"role": "assistant", "content": output_text}]
            text_chatbot_history = updated_text_state # format for chatbot display
            formatted_history = []
            for message in text_chatbot_history:
                formatted_history.append((message["content"] if message["role"] == "user" else None, message["content"] if message["role"] == "assistant" else None))


            return formatted_history, updated_text_state, chatbot_type_state, gr.ChatInterface.update(visible=True), gr.Chatbot.update(visible=False) # Show text interface, hide vision chatbot


    send_button.click(
        send_message,
        inputs=[image_input, text_input, chatbot_type_state, text_state, vision_state,
                text_temperature_slider, text_repetition_penalty_slider, text_top_p_slider, text_top_k_slider, text_max_new_tokens_slider,
                vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider],
        outputs=[chatbot, vision_state, chatbot_type_state, gr.ChatInterface(), gr.Chatbot()] # Dummy ChatInterface output, real Chatbot output
    )

    clear_button.click(
        clear_chat,
        inputs=None,
        outputs=[chatbot, vision_state, text_input, image_input, text_state] # Added text_state to clear
    )


    gr.Examples(
        examples=[
            ["Explain the concept of quantum computing to someone with no background in physics or computer science.", None],
            ["What is OpenShift?", None],
            ["What's the importance of low latency inference?", None],
            ["Help me boost productivity habits.", None],
            [
                """Explain the following code in a concise manner:

```java
import java.util.ArrayList;
import java.util.List;

public class Main {

    public static void main(String[] args) {
        int[] arr = {1, 5, 3, 4, 2};
        int diff = 3;
        List<Pair> pairs = findPairs(arr, diff);
        for (Pair pair : pairs) {
            System.out.println(pair.x + " " + pair.y);
        }
    }

    public static List<Pair> findPairs(int[] arr, int diff) {
        List<Pair> pairs = new ArrayList<>();
        for (int i = 0; i < arr.length; i++) {
            for (int j = i + 1; j < arr.length; j++) {
                if (Math.abs(arr[i] - arr[j]) < diff) {
                    pairs.add(new Pair(arr[i], arr[j]));
                }
            }
        }

        return pairs;
    }
}

class Pair {
    int x;
    int y;
    public Pair(int x, int y) {
        this.x = x;
        this.y = y;
    }
}
```""", None
            ],
            [
                """Generate a Java code block from the following explanation:

The code in the Main class finds all pairs in an array whose absolute difference is less than a given value.

The findPairs method takes two arguments: an array of integers and a difference value. It iterates over the array and compares each element to every other element in the array. If the absolute difference between the two elements is less than the difference value, a new Pair object is created and added to a list.

The Pair class is a simple data structure that stores two integers.

The main method creates an array of integers, initializes the difference value, and calls the findPairs method to find all pairs in the array. Finally, the code iterates over the list of pairs and prints each pair to the console.""" , None # noqa: E501
            ],
            ["What is in this image?", "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"] # Vision example
        ],
        inputs=[text_input, image_input],
        example_labels=[
            "Explain quantum computing",
            "What is OpenShift?",
            "Importance of low latency inference",
            "Boosting productivity habits",
            "Explain and document your code",
            "Generate Java Code",
            "Vision Example: What is in this image?"
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.queue().launch()