Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,751 Bytes
9c3c737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
from collections.abc import Iterator
from datetime import datetime
from pathlib import Path
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Vision model imports
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import random
from themes.research_monochrome import theme
today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002
SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024.
Today's Date: {today_date}.
You are Granite, developed by IBM. You are a helpful AI assistant"""
TITLE = "IBM Granite 3.1 8b Instruct & Vision Preview"
DESCRIPTION = """
<p>Granite 3.1 8b instruct is an open-source LLM supporting a 128k context window and Granite Vision 3.1 2B Preview for vision-language capabilities. Start with one of the sample prompts
or enter your own. Upload an image to use the vision model. Keep in mind that AI can occasionally make mistakes.
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/docs/">View Granite Instruct Documentation <i class="fa fa-external-link"></i></a>
</span>
<span class="gr_docs_link">
<a href="https://www.ibm.com/granite/vision/docs/">View Granite Vision Documentation <i class="fa fa-external-link"></i></a>
</span>
</p>
"""
MAX_INPUT_TOKEN_LENGTH = 128_000
MAX_NEW_TOKENS = 1024
TEMPERATURE = 0.7
TOP_P = 0.85
TOP_K = 50
REPETITION_PENALTY = 1.05
VISION_TEMPERATURE = 0.2
VISION_TOP_P = 0.95
VISION_TOP_K = 50
VISION_MAX_TOKENS = 128
if not torch.cuda.is_available():
print("This demo may not work on CPU.")
# Text model loading
text_model = AutoModelForCausalLM.from_pretrained(
"ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto"
)
text_tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct")
text_tokenizer.use_default_system_prompt = False
# Vision model loading
vision_model_path = "ibm-granite/granite-vision-3.1-2b-preview"
vision_processor = LlavaNextProcessor.from_pretrained(vision_model_path, use_fast=True)
vision_model = LlavaNextForConditionalGeneration.from_pretrained(vision_model_path, torch_dtype="auto", device_map="auto")
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
temperature: float = TEMPERATURE,
repetition_penalty: float = REPETITION_PENALTY,
top_p: float = TOP_P,
top_k: float = TOP_K,
max_new_tokens: int = MAX_NEW_TOKENS,
) -> Iterator[str]:
"""Generate function for text chat demo."""
# Build messages
conversation = []
conversation.append({"role": "system", "content": SYS_PROMPT})
conversation += chat_history
conversation.append({"role": "user", "content": message})
# Convert messages to prompt format
input_ids = text_tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens,
)
input_ids = input_ids.to(text_model.device)
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=text_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def get_text_from_content(content):
texts = []
for item in content:
if item["type"] == "text":
texts.append(item["text"])
elif item["type"] == "image":
texts.append("[Image]")
return " ".join(texts)
@spaces.GPU
def chat_inference(image, text, conversation, temperature=VISION_TEMPERATURE, top_p=VISION_TOP_P, top_k=VISION_TOP_K, max_tokens=VISION_MAX_TOKENS):
if conversation is None:
conversation = []
user_content = []
if image is not None:
user_content.append({"type": "image", "image": image})
if text and text.strip():
user_content.append({"type": "text", "text": text.strip()})
if not user_content:
return conversation_display(conversation), conversation
conversation.append({
"role": "user",
"content": user_content
})
inputs = vision_processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to("cuda")
torch.manual_seed(random.randint(0, 10000))
generation_kwargs = {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": True,
}
output = vision_model.generate(**inputs, **generation_kwargs)
assistant_response = vision_processor.decode(output[0], skip_special_tokens=True)
conversation.append({
"role": "assistant",
"content": [{"type": "text", "text": assistant_response.strip()}]
})
return conversation_display(conversation), conversation
def conversation_display(conversation):
chat_history = []
for msg in conversation:
if msg["role"] == "user":
user_text = get_text_from_content(msg["content"])
chat_history.append({"role": "user", "content": user_text})
elif msg["role"] == "assistant":
assistant_text = msg["content"][0]["text"].split("<|assistant|>")[-1].strip()
chat_history.append({"role": "assistant", "content": assistant_text})
return chat_history
def clear_chat():
return [], [], "", None, [] # Cleared state for both text and vision
css_file_path = Path(Path(__file__).parent / "app.css")
head_file_path = Path(Path(__file__).parent / "app_head.html")
# Advanced settings (displayed in Accordion) - Text Model
text_temperature_slider = gr.Slider(
minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Text Temperature", elem_classes=["gr_accordion_element"]
)
text_top_p_slider = gr.Slider(
minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Text Top P", elem_classes=["gr_accordion_element"]
)
text_top_k_slider = gr.Slider(
minimum=0, maximum=100, value=TOP_K, step=1, label="Text Top K", elem_classes=["gr_accordion_element"]
)
text_repetition_penalty_slider = gr.Slider(
minimum=0,
maximum=2.0,
value=REPETITION_PENALTY,
step=0.05,
label="Text Repetition Penalty",
elem_classes=["gr_accordion_element"],
)
text_max_new_tokens_slider = gr.Slider(
minimum=1,
maximum=2000,
value=MAX_NEW_TOKENS,
step=1,
label="Text Max New Tokens",
elem_classes=["gr_accordion_element"],
)
text_chat_interface_accordion = gr.Accordion(label="Text Model Advanced Settings", open=False)
# Advanced settings (displayed in Accordion) - Vision Model
vision_temperature_slider = gr.Slider(
minimum=0.0, maximum=2.0, value=VISION_TEMPERATURE, step=0.01, label="Vision Temperature", elem_classes=["gr_accordion_element"]
)
vision_top_p_slider = gr.Slider(
minimum=0.0, maximum=1.0, value=VISION_TOP_P, step=0.01, label="Vision Top p", elem_classes=["gr_accordion_element"]
)
vision_top_k_slider = gr.Slider(
minimum=0, maximum=100, value=VISION_TOP_K, step=1, label="Vision Top k", elem_classes=["gr_accordion_element"]
)
vision_max_tokens_slider = gr.Slider(
minimum=10, maximum=300, value=VISION_MAX_TOKENS, step=1, label="Vision Max Tokens", elem_classes=["gr_accordion_element"]
)
vision_chat_interface_accordion = gr.Accordion(label="Vision Model Advanced Settings", open=False)
with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo:
gr.HTML(f"<h1>{TITLE}</h1>", elem_classes=["gr_title"])
gr.HTML(DESCRIPTION)
chatbot = gr.Chatbot(label="Chat History", elem_id="chatbot", height=500, type='messages')
text_input = gr.Textbox(lines=2, placeholder="Enter your message here", label="Message")
image_input = gr.Image(type="pil", label="Upload Image (optional)")
with text_chat_interface_accordion:
text_temperature_slider
text_top_p_slider
text_top_k_slider
text_repetition_penalty_slider
text_max_new_tokens_slider
with vision_chat_interface_accordion:
vision_temperature_slider
vision_top_p_slider
vision_top_k_slider
vision_max_tokens_slider
clear_button = gr.Button("Clear Chat")
send_button = gr.Button("Send Message") # Changed from "Chat" to "Send Message" for clarity
text_state = gr.State([]) # State for text chatbot history
vision_state = gr.State([]) # State for vision chatbot history
chatbot_type_state = gr.State("text") # State to track which chatbot is in use
def send_message(image_input, text_input, chatbot_type_state, text_state, vision_state,
text_temperature, text_repetition_penalty, text_top_p, text_top_k, text_max_new_tokens,
vision_temperature, vision_top_p, vision_top_k, vision_max_tokens):
if image_input:
chatbot_type_state = "vision"
history = vision_state
gen_kwargs_vision = {
"temperature": vision_temperature,
"top_p": vision_top_p,
"top_k": vision_top_k,
"max_tokens": vision_max_tokens,
"conversation": history
}
chat_output, updated_vision_state = chat_inference(image=image_input, text=text_input, **gen_kwargs_vision)
return chat_output, updated_vision_state, chatbot_type_state, gr.ChatInterface.update(visible=False), gr.Chatbot.update(visible=True) # Hide text interface, show vision chatbot
else:
chatbot_type_state = "text"
history = text_state
gen_kwargs_text = {
"temperature": text_temperature,
"repetition_penalty": text_repetition_penalty,
"top_p": text_top_p,
"top_k": text_top_k,
"max_new_tokens": text_max_new_tokens,
"message": text_input,
"chat_history": history
}
chat_output_iterator = generate(**gen_kwargs_text)
output_text = ""
for text_chunk in chat_output_iterator:
output_text = text_chunk
updated_text_state = history + [{"role": "user", "content": text_input}, {"role": "assistant", "content": output_text}]
text_chatbot_history = updated_text_state # format for chatbot display
formatted_history = []
for message in text_chatbot_history:
formatted_history.append((message["content"] if message["role"] == "user" else None, message["content"] if message["role"] == "assistant" else None))
return formatted_history, updated_text_state, chatbot_type_state, gr.ChatInterface.update(visible=True), gr.Chatbot.update(visible=False) # Show text interface, hide vision chatbot
send_button.click(
send_message,
inputs=[image_input, text_input, chatbot_type_state, text_state, vision_state,
text_temperature_slider, text_repetition_penalty_slider, text_top_p_slider, text_top_k_slider, text_max_new_tokens_slider,
vision_temperature_slider, vision_top_p_slider, vision_top_k_slider, vision_max_tokens_slider],
outputs=[chatbot, vision_state, chatbot_type_state, gr.ChatInterface(), gr.Chatbot()] # Dummy ChatInterface output, real Chatbot output
)
clear_button.click(
clear_chat,
inputs=None,
outputs=[chatbot, vision_state, text_input, image_input, text_state] # Added text_state to clear
)
gr.Examples(
examples=[
["Explain the concept of quantum computing to someone with no background in physics or computer science.", None],
["What is OpenShift?", None],
["What's the importance of low latency inference?", None],
["Help me boost productivity habits.", None],
[
"""Explain the following code in a concise manner:
```java
import java.util.ArrayList;
import java.util.List;
public class Main {
public static void main(String[] args) {
int[] arr = {1, 5, 3, 4, 2};
int diff = 3;
List<Pair> pairs = findPairs(arr, diff);
for (Pair pair : pairs) {
System.out.println(pair.x + " " + pair.y);
}
}
public static List<Pair> findPairs(int[] arr, int diff) {
List<Pair> pairs = new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
for (int j = i + 1; j < arr.length; j++) {
if (Math.abs(arr[i] - arr[j]) < diff) {
pairs.add(new Pair(arr[i], arr[j]));
}
}
}
return pairs;
}
}
class Pair {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
```""", None
],
[
"""Generate a Java code block from the following explanation:
The code in the Main class finds all pairs in an array whose absolute difference is less than a given value.
The findPairs method takes two arguments: an array of integers and a difference value. It iterates over the array and compares each element to every other element in the array. If the absolute difference between the two elements is less than the difference value, a new Pair object is created and added to a list.
The Pair class is a simple data structure that stores two integers.
The main method creates an array of integers, initializes the difference value, and calls the findPairs method to find all pairs in the array. Finally, the code iterates over the list of pairs and prints each pair to the console.""" , None # noqa: E501
],
["What is in this image?", "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"] # Vision example
],
inputs=[text_input, image_input],
example_labels=[
"Explain quantum computing",
"What is OpenShift?",
"Importance of low latency inference",
"Boosting productivity habits",
"Explain and document your code",
"Generate Java Code",
"Vision Example: What is in this image?"
],
cache_examples=False,
)
if __name__ == "__main__":
demo.queue().launch() |