Spaces:
Running
Running
File size: 2,788 Bytes
9ab0176 3ac3046 aa2978b 3ac3046 aa2978b c9a4507 3ac3046 aa2978b 5cbd171 3ac3046 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b c9a4507 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import streamlit as st
import requests
# Hugging Face API URL
API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
# Function to query the Hugging Face API
def query(payload):
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="🤖",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar configuration
with st.sidebar:
st.header("Model Configuration")
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
height=100
)
max_tokens = st.slider(
"Max Tokens",
1, 4000, 512
)
temperature = st.slider(
"Temperature",
0.1, 4.0, 0.7
)
top_p = st.slider(
"Top-p",
0.1, 1.0, 0.9
)
# Chat interface
st.title("🤖 DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle input
if prompt := st.chat_input("Type your message..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
try:
with st.spinner("Generating response..."):
# Prepare the payload for the API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
}
}
# Query the Hugging Face API
output = query(payload)
# Handle API response
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
assistant_response = output[0]['generated_text']
else:
st.error("Error: Unable to generate a response. Please try again.")
return
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
except Exception as e:
st.error(f"Application Error: {str(e)}") |