ruslanmv commited on
Commit
aa2978b
·
verified ·
1 Parent(s): 5cbd171

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -64
app.py CHANGED
@@ -1,107 +1,95 @@
1
  import streamlit as st
2
  import requests
3
 
4
- # -----------------------------------
5
- # 1. Hugging Face API Configuration
6
- # -----------------------------------
7
  API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
8
 
 
9
  def query(payload):
10
- """
11
- Query the Hugging Face Inference API with the given payload.
12
- Keeps the original approach: payload = {"inputs": user_input}.
13
- """
14
  headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
15
  response = requests.post(API_URL, headers=headers, json=payload)
16
  return response.json()
17
 
18
-
19
- # -----------------------------------
20
- # 2. Streamlit Page Settings
21
- # -----------------------------------
22
  st.set_page_config(
23
  page_title="DeepSeek Chatbot - ruslanmv.com",
24
  page_icon="🤖",
25
  layout="centered"
26
  )
27
 
28
- # -----------------------------------
29
- # 3. Session State Initialization
30
- # -----------------------------------
31
- # We'll keep a chat history in st.session_state
32
  if "messages" not in st.session_state:
33
  st.session_state.messages = []
34
 
35
- # -----------------------------------
36
- # 4. Sidebar Configuration
37
- # -----------------------------------
38
  with st.sidebar:
39
- st.header("Configuration")
40
- st.markdown("[Get your HuggingFace Token](https://huggingface.co/settings/tokens)")
41
-
42
- # Although these parameters are shown on the sidebar, we won't actually
43
- # pass them to the payload in `query()`, to strictly preserve the "original" approach.
44
- st.write("**NOTE:** These sliders do not affect the inference in this demo.")
45
  system_message = st.text_area(
46
- "System Message (display only)",
47
  value="You are a friendly Chatbot created by ruslanmv.com",
48
  height=100
49
  )
50
- max_tokens = st.slider("Max Tokens (not used here)", 1, 4000, 512)
51
- temperature = st.slider("Temperature (not used here)", 0.1, 4.0, 0.7)
52
- top_p = st.slider("Top-p (not used here)", 0.1, 1.0, 0.9)
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
- # -----------------------------------
55
- # 5. Main Chat Interface
56
- # -----------------------------------
57
  st.title("🤖 DeepSeek Chatbot")
58
- st.caption("Powered by Hugging Face Inference API - Original Inference Approach")
59
 
60
- # Display the chat history, message by message
61
  for message in st.session_state.messages:
62
  with st.chat_message(message["role"]):
63
  st.markdown(message["content"])
64
 
65
- # -----------------------------------
66
- # 6. Capture User Input
67
- # -----------------------------------
68
- if user_input := st.chat_input("Type your message..."):
69
- # 6.1 Append user message to chat history
70
- st.session_state.messages.append({"role": "user", "content": user_input})
71
 
72
- # Display user's message
73
  with st.chat_message("user"):
74
- st.markdown(user_input)
75
 
76
- # -----------------------------------
77
- # 7. Query the Model
78
- # -----------------------------------
79
  try:
80
  with st.spinner("Generating response..."):
81
- # Prepare payload with the original approach
82
- payload = {"inputs": user_input}
 
 
 
 
 
 
 
 
 
 
83
  output = query(payload)
84
-
85
- # Check if the output is valid
86
- if (
87
- isinstance(output, list)
88
- and len(output) > 0
89
- and "generated_text" in output[0]
90
- ):
91
- assistant_response = output[0]["generated_text"]
92
  else:
93
- assistant_response = (
94
- "Error: Unable to generate a response. Please try again."
95
- )
96
 
97
- # Display the assistant's response
98
  with st.chat_message("assistant"):
99
  st.markdown(assistant_response)
100
-
101
- # Store assistant's response in chat history
102
- st.session_state.messages.append(
103
- {"role": "assistant", "content": assistant_response}
104
- )
105
 
106
  except Exception as e:
107
- st.error(f"Application Error: {str(e)}")
 
1
  import streamlit as st
2
  import requests
3
 
4
+ # Hugging Face API URL
 
 
5
  API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
6
 
7
+ # Function to query the Hugging Face API
8
  def query(payload):
 
 
 
 
9
  headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
10
  response = requests.post(API_URL, headers=headers, json=payload)
11
  return response.json()
12
 
13
+ # Page configuration
 
 
 
14
  st.set_page_config(
15
  page_title="DeepSeek Chatbot - ruslanmv.com",
16
  page_icon="🤖",
17
  layout="centered"
18
  )
19
 
20
+ # Initialize session state for chat history
 
 
 
21
  if "messages" not in st.session_state:
22
  st.session_state.messages = []
23
 
24
+ # Sidebar configuration
 
 
25
  with st.sidebar:
26
+ st.header("Model Configuration")
27
+ st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
28
+
 
 
 
29
  system_message = st.text_area(
30
+ "System Message",
31
  value="You are a friendly Chatbot created by ruslanmv.com",
32
  height=100
33
  )
34
+
35
+ max_tokens = st.slider(
36
+ "Max Tokens",
37
+ 1, 4000, 512
38
+ )
39
+
40
+ temperature = st.slider(
41
+ "Temperature",
42
+ 0.1, 4.0, 0.7
43
+ )
44
+
45
+ top_p = st.slider(
46
+ "Top-p",
47
+ 0.1, 1.0, 0.9
48
+ )
49
 
50
+ # Chat interface
 
 
51
  st.title("🤖 DeepSeek Chatbot")
52
+ st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
53
 
54
+ # Display chat history
55
  for message in st.session_state.messages:
56
  with st.chat_message(message["role"]):
57
  st.markdown(message["content"])
58
 
59
+ # Handle input
60
+ if prompt := st.chat_input("Type your message..."):
61
+ st.session_state.messages.append({"role": "user", "content": prompt})
 
 
 
62
 
 
63
  with st.chat_message("user"):
64
+ st.markdown(prompt)
65
 
 
 
 
66
  try:
67
  with st.spinner("Generating response..."):
68
+ # Prepare the payload for the API
69
+ payload = {
70
+ "inputs": prompt,
71
+ "parameters": {
72
+ "max_new_tokens": max_tokens,
73
+ "temperature": temperature,
74
+ "top_p": top_p,
75
+ "return_full_text": False
76
+ }
77
+ }
78
+
79
+ # Query the Hugging Face API
80
  output = query(payload)
81
+
82
+ # Handle API response
83
+ if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
84
+ assistant_response = output[0]['generated_text']
 
 
 
 
85
  else:
86
+ st.error("Error: Unable to generate a response. Please try again.")
87
+ return
 
88
 
 
89
  with st.chat_message("assistant"):
90
  st.markdown(assistant_response)
91
+
92
+ st.session_state.messages.append({"role": "assistant", "content": assistant_response})
 
 
 
93
 
94
  except Exception as e:
95
+ st.error(f"Application Error: {str(e)}")