Spaces:
Running
Running
File size: 6,740 Bytes
94d49c9 9ab0176 3ac3046 aa2978b 5cbd171 3ac3046 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 6f4957a e897ba9 5cbd171 aa2978b 5cbd171 6f4957a aa2978b 6f4957a aa2978b 6f4957a aa2978b 5cbd171 189960f aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 5cbd171 aa2978b 6f4957a 5cbd171 aa2978b 5cbd171 aa2978b 6f4957a 189960f e897ba9 189960f 6f4957a aa2978b 6f4957a 2c10389 5cbd171 2c10389 5cbd171 94d49c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import streamlit as st
import requests
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="π€",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar configuration
with st.sidebar:
st.header("Model Configuration")
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
# Dropdown to select model
model_options = [
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1",
"deepseek-ai/DeepSeek-R1-Zero"
]
selected_model = st.selectbox("Select Model", model_options, index=0)
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
height=100
)
max_tokens = st.slider(
"Max Tokens",
1, 4000, 512
)
temperature = st.slider(
"Temperature",
0.1, 4.0, 0.7
)
top_p = st.slider(
"Top-p",
0.1, 1.0, 0.9
)
# Function to query the Hugging Face API
def query(payload, api_url):
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
logger.info(f"Sending request to {api_url} with payload: {payload}")
response = requests.post(api_url, headers=headers, json=payload)
logger.info(f"Received response: {response.status_code}, {response.text}")
return response.json()
# Chat interface
st.title("π€ DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle input
if prompt := st.chat_input("Type your message..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
try:
with st.spinner("Generating response..."):
# Prepare the payload for the API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
}
}
# Dynamically construct the API URL based on the selected model
api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
logger.info(f"Selected model: {selected_model}, API URL: {api_url}")
# Query the Hugging Face API using the selected model
output = query(payload, api_url)
# Handle API response
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
assistant_response = output[0]['generated_text']
logger.info(f"Generated response: {assistant_response}")
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
else:
logger.error(f"Unexpected API response: {output}")
st.error("Error: Unable to generate a response. Please try again.")
except Exception as e:
logger.error(f"Application Error: {str(e)}", exc_info=True)
st.error(f"Application Error: {str(e)}")
''''
import streamlit as st
import requests
# Page configuration
st.set_page_config(
page_title="DeepSeek Chatbot - ruslanmv.com",
page_icon="π€",
layout="centered"
)
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar configuration
with st.sidebar:
st.header("Model Configuration")
st.markdown("[Get HuggingFace Token](https://huggingface.co/settings/tokens)")
# Dropdown to select model
model_options = [
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1",
"deepseek-ai/DeepSeek-R1-Zero"
]
selected_model = st.selectbox("Select Model", model_options, index=0)
system_message = st.text_area(
"System Message",
value="You are a friendly Chatbot created by ruslanmv.com",
height=100
)
max_tokens = st.slider(
"Max Tokens",
1, 4000, 512
)
temperature = st.slider(
"Temperature",
0.1, 4.0, 0.7
)
top_p = st.slider(
"Top-p",
0.1, 1.0, 0.9
)
# Function to query the Hugging Face API
def query(payload, api_url):
headers = {"Authorization": f"Bearer {st.secrets['HF_TOKEN']}"}
response = requests.post(api_url, headers=headers, json=payload)
return response.json()
# Chat interface
st.title("π€ DeepSeek Chatbot")
st.caption("Powered by Hugging Face Inference API - Configure in sidebar")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle input
if prompt := st.chat_input("Type your message..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
try:
with st.spinner("Generating response..."):
# Prepare the payload for the API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"return_full_text": False
}
}
# Dynamically construct the API URL based on the selected model
api_url = f"https://api-inference.huggingface.co/models/{selected_model}"
# Query the Hugging Face API using the selected model
output = query(payload, api_url)
# Handle API response
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
assistant_response = output[0]['generated_text']
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
else:
st.error("Error: Unable to generate a response. Please try again.")
except Exception as e:
st.error(f"Application Error: {str(e)}")
''' |