Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,086 Bytes
9439556 51833bf 9439556 75128ac 51833bf 75128ac 51833bf 84c4fac 9439556 51833bf 84c4fac 9439556 84c4fac 9439556 84c4fac 51833bf 84c4fac 9439556 51833bf 84c4fac 51833bf 9439556 9de310e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
import gradio as gr
import spaces
import torch
# neuralmind/bert-base-portuguese-cased
ModelName = "neuralmind/bert-base-portuguese-cased"
model = AutoModel.from_pretrained(ModelName)
tokenizer = AutoTokenizer.from_pretrained(ModelName, do_lower_case=False)
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
# tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
# text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
# text_model.eval()
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@spaces.GPU
def TxtEmbed(text):
input_ids = tokenizer.encode(text, return_tensors='pt')
with torch.no_grad():
outs = model(input_ids)
encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
return (encoded.tolist())[0];
#sentences = [text]
#encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
#
#with torch.no_grad():
# model_output = text_model(**encoded_input)
#
#text_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
#text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],))
#text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
#
# return (text_embeddings.tolist)[0]
with gr.Blocks() as demo:
txt = gr.Text();
out = gr.Text();
btn = gr.Button("Gerar embeddings")
btn.click(TxtEmbed, [txt], [out])
if __name__ == "__main__":
demo.launch(show_api=True) |