Spaces:
Running
on
Zero
Running
on
Zero
Changed to Text embeddings
Browse files
app.py
CHANGED
@@ -1,31 +1,46 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
|
4 |
-
import gradio as gr
|
5 |
-
import spaces
|
6 |
-
|
7 |
-
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
|
8 |
-
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
demo.launch(show_api=True)
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
|
4 |
+
import gradio as gr
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
|
8 |
+
vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
|
11 |
+
text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
12 |
+
text_model.eval()
|
13 |
+
|
14 |
+
def mean_pooling(model_output, attention_mask):
|
15 |
+
token_embeddings = model_output[0]
|
16 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
17 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
18 |
+
|
19 |
+
@spaces.GPU
|
20 |
+
def TxtEmbed(text):
|
21 |
+
|
22 |
+
sentences = [text]
|
23 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
model_output = text_model(**encoded_input)
|
27 |
+
|
28 |
+
text_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
29 |
+
text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],))
|
30 |
+
text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
|
31 |
+
|
32 |
+
return text_embeddings.to_list();
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
with gr.Blocks() as demo:
|
38 |
+
txt = gr.Text();
|
39 |
+
out = gr.Text();
|
40 |
+
|
41 |
+
btn = gr.Button("Gerar embeddings")
|
42 |
+
btn.click(TxtEmbed, [txt], [out])
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
demo.launch(show_api=True)
|