Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
import argparse | |
import os | |
import time | |
import matplotlib.pyplot as plt | |
from a3c.train import train | |
from a3c.eval import evaluate, evaluate_checkpoints | |
from a3c.play import suggest | |
from wordle_env.wordle import get_env | |
def training_mode(args, env, model_checkpoint_dir): | |
max_ep = args.games | |
start_time = time.time() | |
pretrained_model_path = os.path.join(model_checkpoint_dir, args.model_name) if args.model_name else args.model_name | |
global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir, args.gamma, args.seed, pretrained_model_path, args.save, args.min_reward, args.every_n_save) | |
print("--- %.0f seconds ---" % (time.time() - start_time)) | |
print_results(global_ep, win_ep, res) | |
evaluate(gnet, env) | |
def evaluation_mode(args, env, model_checkpoint_dir): | |
print("Evaluation mode") | |
results = evaluate_checkpoints(model_checkpoint_dir, env) | |
print(results) | |
def play_mode(args, env, model_checkpoint_dir): | |
print("Play mode") | |
words = [ word.strip() for word in args.words.split(',') ] | |
states = [ state.strip() for state in args.states.split(',') ] | |
pretrained_model_path = os.path.join(model_checkpoint_dir, args.model_name) | |
word = suggest(env, words, states, pretrained_model_path) | |
print(word) | |
def print_results(global_ep, win_ep, res): | |
print("Jugadas:", global_ep.value) | |
print("Ganadas:", win_ep.value) | |
plt.plot(res) | |
plt.ylabel('Moving average ep reward') | |
plt.xlabel('Step') | |
plt.show() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"enviroment", help="Enviroment (type of wordle game) used for training, example: WordleEnvFull-v0") | |
parser.add_argument( | |
"--models_dir", help="Directory where models are saved (default=checkpoints)", default='checkpoints') | |
subparsers = parser.add_subparsers(help='sub-command help') | |
parser_train = subparsers.add_parser( | |
'train', help='Train a model from scratch or train from pretrained model') | |
parser_train.add_argument( | |
"--games", "-g", help="Number of games to train", type=int, required=True) | |
parser_train.add_argument( | |
"--model_name", "-m", help="If want to train from a pretrained model, the name of the pretrained model file") | |
parser_train.add_argument( | |
"--gamma", help="Gamma hyperparameter (discount factor) value", type=float, default=0.) | |
parser_train.add_argument( | |
"--seed", help="Seed used for random numbers generation", type=int, default=100) | |
parser_train.add_argument( | |
"--save", '-s', help="Save instances of the model while training", action='store_true') | |
parser_train.add_argument( | |
"--min_reward", help="The minimun global reward value achieved for saving the model", type=float, default=9.9) | |
parser_train.add_argument( | |
"--every_n_save", help="Check every n training steps to save the model", type=int, default=100) | |
parser_train.set_defaults(func=training_mode) | |
parser_eval = subparsers.add_parser( | |
'eval', help='Evaluate saved models for the enviroment') | |
parser_eval.set_defaults(func=evaluation_mode) | |
parser_play = subparsers.add_parser( | |
'play', help='Give the model a word and the state result and the model will try to predict the goal word') | |
parser_play.add_argument( | |
"--words", "-w", help="List of words played in the wordle game", required=True) | |
parser_play.add_argument( | |
"--states", "-st", help="List of states returned by playing each of the words", required=True) | |
parser_play.add_argument( | |
"--model_name", "-m", help="Name of the pretrained model file thich will play the game", required=True) | |
parser_play.set_defaults(func=play_mode) | |
args = parser.parse_args() | |
env_id = args.enviroment | |
env = get_env(env_id) | |
model_checkpoint_dir = os.path.join(args.models_dir, env.unwrapped.spec.id) | |
args.func(args, env, model_checkpoint_dir) | |