wordle-solver / main.py
santit96's picture
Creation of an api module with a rest endpoint /suggest which receives a list of words and states and return a suggestion
1c007bb
raw
history blame
3.98 kB
#!/usr/bin/env python3
import argparse
import os
import time
import matplotlib.pyplot as plt
from a3c.train import train
from a3c.eval import evaluate, evaluate_checkpoints
from a3c.play import suggest
from wordle_env.wordle import get_env
def training_mode(args, env, model_checkpoint_dir):
max_ep = args.games
start_time = time.time()
pretrained_model_path = os.path.join(model_checkpoint_dir, args.model_name) if args.model_name else args.model_name
global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir, args.gamma, args.seed, pretrained_model_path, args.save, args.min_reward, args.every_n_save)
print("--- %.0f seconds ---" % (time.time() - start_time))
print_results(global_ep, win_ep, res)
evaluate(gnet, env)
def evaluation_mode(args, env, model_checkpoint_dir):
print("Evaluation mode")
results = evaluate_checkpoints(model_checkpoint_dir, env)
print(results)
def play_mode(args, env, model_checkpoint_dir):
print("Play mode")
words = [ word.strip() for word in args.words.split(',') ]
states = [ state.strip() for state in args.states.split(',') ]
pretrained_model_path = os.path.join(model_checkpoint_dir, args.model_name)
word = suggest(env, words, states, pretrained_model_path)
print(word)
def print_results(global_ep, win_ep, res):
print("Jugadas:", global_ep.value)
print("Ganadas:", win_ep.value)
plt.plot(res)
plt.ylabel('Moving average ep reward')
plt.xlabel('Step')
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"enviroment", help="Enviroment (type of wordle game) used for training, example: WordleEnvFull-v0")
parser.add_argument(
"--models_dir", help="Directory where models are saved (default=checkpoints)", default='checkpoints')
subparsers = parser.add_subparsers(help='sub-command help')
parser_train = subparsers.add_parser(
'train', help='Train a model from scratch or train from pretrained model')
parser_train.add_argument(
"--games", "-g", help="Number of games to train", type=int, required=True)
parser_train.add_argument(
"--model_name", "-m", help="If want to train from a pretrained model, the name of the pretrained model file")
parser_train.add_argument(
"--gamma", help="Gamma hyperparameter (discount factor) value", type=float, default=0.)
parser_train.add_argument(
"--seed", help="Seed used for random numbers generation", type=int, default=100)
parser_train.add_argument(
"--save", '-s', help="Save instances of the model while training", action='store_true')
parser_train.add_argument(
"--min_reward", help="The minimun global reward value achieved for saving the model", type=float, default=9.9)
parser_train.add_argument(
"--every_n_save", help="Check every n training steps to save the model", type=int, default=100)
parser_train.set_defaults(func=training_mode)
parser_eval = subparsers.add_parser(
'eval', help='Evaluate saved models for the enviroment')
parser_eval.set_defaults(func=evaluation_mode)
parser_play = subparsers.add_parser(
'play', help='Give the model a word and the state result and the model will try to predict the goal word')
parser_play.add_argument(
"--words", "-w", help="List of words played in the wordle game", required=True)
parser_play.add_argument(
"--states", "-st", help="List of states returned by playing each of the words", required=True)
parser_play.add_argument(
"--model_name", "-m", help="Name of the pretrained model file thich will play the game", required=True)
parser_play.set_defaults(func=play_mode)
args = parser.parse_args()
env_id = args.enviroment
env = get_env(env_id)
model_checkpoint_dir = os.path.join(args.models_dir, env.unwrapped.spec.id)
args.func(args, env, model_checkpoint_dir)