#!/usr/bin/env python3 import argparse import os import time import matplotlib.pyplot as plt from a3c.train import train from a3c.eval import evaluate, evaluate_checkpoints from a3c.play import suggest from wordle_env.wordle import get_env def training_mode(args, env, model_checkpoint_dir): max_ep = args.games start_time = time.time() pretrained_model_path = os.path.join(model_checkpoint_dir, args.model_name) if args.model_name else args.model_name global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir, args.gamma, args.seed, pretrained_model_path, args.save, args.min_reward, args.every_n_save) print("--- %.0f seconds ---" % (time.time() - start_time)) print_results(global_ep, win_ep, res) evaluate(gnet, env) def evaluation_mode(args, env, model_checkpoint_dir): print("Evaluation mode") results = evaluate_checkpoints(model_checkpoint_dir, env) print(results) def play_mode(args, env, model_checkpoint_dir): print("Play mode") words = [ word.strip() for word in args.words.split(',') ] states = [ state.strip() for state in args.states.split(',') ] pretrained_model_path = os.path.join(model_checkpoint_dir, args.model_name) word = suggest(env, words, states, pretrained_model_path) print(word) def print_results(global_ep, win_ep, res): print("Jugadas:", global_ep.value) print("Ganadas:", win_ep.value) plt.plot(res) plt.ylabel('Moving average ep reward') plt.xlabel('Step') plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "enviroment", help="Enviroment (type of wordle game) used for training, example: WordleEnvFull-v0") parser.add_argument( "--models_dir", help="Directory where models are saved (default=checkpoints)", default='checkpoints') subparsers = parser.add_subparsers(help='sub-command help') parser_train = subparsers.add_parser( 'train', help='Train a model from scratch or train from pretrained model') parser_train.add_argument( "--games", "-g", help="Number of games to train", type=int, required=True) parser_train.add_argument( "--model_name", "-m", help="If want to train from a pretrained model, the name of the pretrained model file") parser_train.add_argument( "--gamma", help="Gamma hyperparameter (discount factor) value", type=float, default=0.) parser_train.add_argument( "--seed", help="Seed used for random numbers generation", type=int, default=100) parser_train.add_argument( "--save", '-s', help="Save instances of the model while training", action='store_true') parser_train.add_argument( "--min_reward", help="The minimun global reward value achieved for saving the model", type=float, default=9.9) parser_train.add_argument( "--every_n_save", help="Check every n training steps to save the model", type=int, default=100) parser_train.set_defaults(func=training_mode) parser_eval = subparsers.add_parser( 'eval', help='Evaluate saved models for the enviroment') parser_eval.set_defaults(func=evaluation_mode) parser_play = subparsers.add_parser( 'play', help='Give the model a word and the state result and the model will try to predict the goal word') parser_play.add_argument( "--words", "-w", help="List of words played in the wordle game", required=True) parser_play.add_argument( "--states", "-st", help="List of states returned by playing each of the words", required=True) parser_play.add_argument( "--model_name", "-m", help="Name of the pretrained model file thich will play the game", required=True) parser_play.set_defaults(func=play_mode) args = parser.parse_args() env_id = args.enviroment env = get_env(env_id) model_checkpoint_dir = os.path.join(args.models_dir, env.unwrapped.spec.id) args.func(args, env, model_checkpoint_dir)