santit96's picture
Create the streamlit app that classifies the trash in an image into classes
fa84113
""" OpenImages dataset parser
Copyright 2020 Ross Wightman
"""
import numpy as np
import os
import logging
from .parser import Parser
from .parser_config import OpenImagesParserCfg
_logger = logging.getLogger(__name__)
class OpenImagesParser(Parser):
def __init__(self, cfg: OpenImagesParserCfg):
super().__init__(
bbox_yxyx=cfg.bbox_yxyx,
has_labels=cfg.has_labels,
include_masks=False, # FIXME to support someday
include_bboxes_ignore=False,
ignore_empty_gt=cfg.has_labels and cfg.ignore_empty_gt,
min_img_size=cfg.min_img_size
)
self.img_prefix_levels = cfg.prefix_levels
self.mask_prefix_levels = 1
self._anns = None # access via get_ann_info()
self._img_to_ann = None
self._load_annotations(
categories_filename=cfg.categories_filename,
img_info_filename=cfg.img_info_filename,
img_filename=cfg.img_filename,
masks_filename=cfg.masks_filename,
bbox_filename=cfg.bbox_filename
)
def _load_annotations(
self,
categories_filename: str,
img_info_filename: str,
img_filename: str,
masks_filename: str,
bbox_filename: str,
):
import pandas as pd # For now, blow up on pandas req only when trying to load open images anno
_logger.info('Loading categories...')
classes_df = pd.read_csv(categories_filename, header=None)
self.cat_ids = classes_df[0].tolist()
self.cat_names = classes_df[1].tolist()
self.cat_id_to_label = {c: i + self.label_offset for i, c in enumerate(self.cat_ids)}
def _img_filename(img_id):
# build image filenames that are relative to img_dir
filename = img_filename % img_id
if self.img_prefix_levels:
levels = [c for c in img_id[:self.img_prefix_levels]]
filename = os.path.join(*levels, filename)
return filename
def _mask_filename(mask_path):
# FIXME finish
if self.mask_prefix_levels:
levels = [c for c in mask_path[:self.mask_prefix_levels]]
mask_path = os.path.join(*levels, mask_path)
return mask_path
def _load_img_info(csv_file, select_img_ids=None):
_logger.info('Read img_info csv...')
img_info_df = pd.read_csv(csv_file, index_col='id')
_logger.info('Filter images...')
if select_img_ids is not None:
img_info_df = img_info_df.loc[select_img_ids]
img_info_df = img_info_df[
(img_info_df['width'] >= self.min_img_size) & (img_info_df['height'] >= self.min_img_size)]
_logger.info('Mapping ids...')
img_info_df['img_id'] = img_info_df.index
img_info_df['file_name'] = img_info_df.index.map(lambda x: _img_filename(x))
img_info_df = img_info_df[['img_id', 'file_name', 'width', 'height']]
img_sizes = img_info_df[['width', 'height']].values
self.img_infos = img_info_df.to_dict('records')
self.img_ids = img_info_df.index.values.tolist()
img_id_to_idx = {img_id: idx for idx, img_id in enumerate(self.img_ids)}
return img_sizes, img_id_to_idx
if self.include_masks and self.has_labels:
masks_df = pd.read_csv(masks_filename)
# NOTE currently using dataset masks anno ImageIDs to form valid img_ids from the dataset
anno_img_ids = sorted(masks_df['ImageID'].unique())
img_sizes, img_id_to_idx = _load_img_info(img_info_filename, select_img_ids=anno_img_ids)
masks_df['ImageIdx'] = masks_df['ImageID'].map(img_id_to_idx)
if np.issubdtype(masks_df.ImageIdx.dtype, np.floating):
masks_df = masks_df.dropna(axis='rows')
masks_df['ImageIdx'] = masks_df.ImageIdx.astype(np.int32)
masks_df.sort_values('ImageIdx', inplace=True)
ann_img_idx = masks_df['ImageIdx'].values
img_sizes = img_sizes[ann_img_idx]
masks_df['BoxXMin'] = masks_df['BoxXMin'] * img_sizes[:, 0]
masks_df['BoxXMax'] = masks_df['BoxXMax'] * img_sizes[:, 0]
masks_df['BoxYMin'] = masks_df['BoxYMin'] * img_sizes[:, 1]
masks_df['BoxYMax'] = masks_df['BoxYMax'] * img_sizes[:, 1]
masks_df['LabelIdx'] = masks_df['LabelName'].map(self.cat_id_to_label)
# FIXME remap mask filename with _mask_filename
self._anns = dict(
bbox=masks_df[['BoxXMin', 'BoxYMin', 'BoxXMax', 'BoxYMax']].values.astype(np.float32),
label=masks_df[['LabelIdx']].values.astype(np.int32),
mask_path=masks_df[['MaskPath']].values
)
_, ri, rc = np.unique(ann_img_idx, return_index=True, return_counts=True)
self._img_to_ann = list(zip(ri, rc)) # index, count tuples
elif self.has_labels:
_logger.info('Loading bbox...')
bbox_df = pd.read_csv(bbox_filename)
# NOTE currently using dataset box anno ImageIDs to form valid img_ids from the larger dataset.
# FIXME use *imagelabels.csv or imagelabels-boxable.csv for negative examples (without box?)
anno_img_ids = sorted(bbox_df['ImageID'].unique())
img_sizes, img_id_to_idx = _load_img_info(img_info_filename, select_img_ids=anno_img_ids)
_logger.info('Process bbox...')
bbox_df['ImageIdx'] = bbox_df['ImageID'].map(img_id_to_idx)
if np.issubdtype(bbox_df.ImageIdx.dtype, np.floating):
bbox_df = bbox_df.dropna(axis='rows')
bbox_df['ImageIdx'] = bbox_df.ImageIdx.astype(np.int32)
bbox_df.sort_values('ImageIdx', inplace=True)
ann_img_idx = bbox_df['ImageIdx'].values
img_sizes = img_sizes[ann_img_idx]
bbox_df['XMin'] = bbox_df['XMin'] * img_sizes[:, 0]
bbox_df['XMax'] = bbox_df['XMax'] * img_sizes[:, 0]
bbox_df['YMin'] = bbox_df['YMin'] * img_sizes[:, 1]
bbox_df['YMax'] = bbox_df['YMax'] * img_sizes[:, 1]
bbox_df['LabelIdx'] = bbox_df['LabelName'].map(self.cat_id_to_label).astype(np.int32)
self._anns = dict(
bbox=bbox_df[['XMin', 'YMin', 'XMax', 'YMax']].values.astype(np.float32),
label=bbox_df[['LabelIdx', 'IsGroupOf']].values.astype(np.int32),
)
_, ri, rc = np.unique(ann_img_idx, return_index=True, return_counts=True)
self._img_to_ann = list(zip(ri, rc)) # index, count tuples
else:
_load_img_info(img_info_filename)
_logger.info('Annotations loaded!')
def get_ann_info(self, idx):
if not self.has_labels:
return dict()
start_idx, num_ann = self._img_to_ann[idx]
ann_keys = tuple(self._anns.keys())
ann_values = tuple(self._anns[k][start_idx:start_idx + num_ann] for k in ann_keys)
return self._parse_ann_info(idx, ann_keys, ann_values)
def _parse_ann_info(self, img_idx, ann_keys, ann_values):
"""
"""
gt_bboxes = []
gt_labels = []
gt_bboxes_ignore = []
if self.include_masks:
assert 'mask_path' in ann_keys
gt_masks = []
for ann in zip(*ann_values):
ann = dict(zip(ann_keys, ann))
x1, y1, x2, y2 = ann['bbox']
if x2 - x1 < 1 or y2 - y1 < 1:
continue
label = ann['label'][0]
iscrowd = False
if len(ann['label']) > 1:
iscrowd = ann['label'][1]
if self.yxyx:
bbox = np.array([y1, x1, y2, x2], dtype=np.float32)
else:
bbox = ann['bbox']
if iscrowd:
gt_bboxes_ignore.append(bbox)
else:
gt_bboxes.append(bbox)
gt_labels.append(label)
# if self.include_masks:
# img_info = self.img_infos[img_idx]
# mask_img = SegmentationMask(ann['mask_filename'], img_info['width'], img_info['height'])
# gt_masks.append(mask_img)
if gt_bboxes:
gt_bboxes = np.array(gt_bboxes, ndmin=2, dtype=np.float32)
gt_labels = np.array(gt_labels, dtype=np.int64)
else:
gt_bboxes = np.zeros((0, 4), dtype=np.float32)
gt_labels = np.array([], dtype=np.int64)
if self.include_bboxes_ignore:
if gt_bboxes_ignore:
gt_bboxes_ignore = np.array(gt_bboxes_ignore, ndmin=2, dtype=np.float32)
else:
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
ann = dict(bbox=gt_bboxes, cls=gt_labels)
if self.include_bboxes_ignore:
ann.update(dict(bbox_ignore=gt_bboxes_ignore, cls_ignore=np.array([], dtype=np.int64)))
if self.include_masks:
ann['masks'] = gt_masks
return ann