File size: 9,161 Bytes
fa84113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
""" OpenImages dataset parser

Copyright 2020 Ross Wightman
"""
import numpy as np
import os
import logging

from .parser import Parser
from .parser_config import OpenImagesParserCfg

_logger = logging.getLogger(__name__)


class OpenImagesParser(Parser):

    def __init__(self, cfg: OpenImagesParserCfg):
        super().__init__(
            bbox_yxyx=cfg.bbox_yxyx,
            has_labels=cfg.has_labels,
            include_masks=False,  # FIXME to support someday
            include_bboxes_ignore=False,
            ignore_empty_gt=cfg.has_labels and cfg.ignore_empty_gt,
            min_img_size=cfg.min_img_size
        )
        self.img_prefix_levels = cfg.prefix_levels
        self.mask_prefix_levels = 1
        self._anns = None  # access via get_ann_info()
        self._img_to_ann = None
        self._load_annotations(
            categories_filename=cfg.categories_filename,
            img_info_filename=cfg.img_info_filename,
            img_filename=cfg.img_filename,
            masks_filename=cfg.masks_filename,
            bbox_filename=cfg.bbox_filename
        )

    def _load_annotations(
            self,
            categories_filename: str,
            img_info_filename: str,
            img_filename: str,
            masks_filename: str,
            bbox_filename: str,
    ):
        import pandas as pd  # For now, blow up on pandas req only when trying to load open images anno

        _logger.info('Loading categories...')
        classes_df = pd.read_csv(categories_filename, header=None)
        self.cat_ids = classes_df[0].tolist()
        self.cat_names = classes_df[1].tolist()
        self.cat_id_to_label = {c: i + self.label_offset for i, c in enumerate(self.cat_ids)}

        def _img_filename(img_id):
            # build image filenames that are relative to img_dir
            filename = img_filename % img_id
            if self.img_prefix_levels:
                levels = [c for c in img_id[:self.img_prefix_levels]]
                filename = os.path.join(*levels, filename)
            return filename

        def _mask_filename(mask_path):
            # FIXME finish
            if self.mask_prefix_levels:
                levels = [c for c in mask_path[:self.mask_prefix_levels]]
                mask_path = os.path.join(*levels, mask_path)
            return mask_path

        def _load_img_info(csv_file, select_img_ids=None):
            _logger.info('Read img_info csv...')
            img_info_df = pd.read_csv(csv_file, index_col='id')

            _logger.info('Filter images...')
            if select_img_ids is not None:
                img_info_df = img_info_df.loc[select_img_ids]
            img_info_df = img_info_df[
                (img_info_df['width'] >= self.min_img_size) & (img_info_df['height'] >= self.min_img_size)]

            _logger.info('Mapping ids...')
            img_info_df['img_id'] = img_info_df.index
            img_info_df['file_name'] = img_info_df.index.map(lambda x: _img_filename(x))
            img_info_df = img_info_df[['img_id', 'file_name', 'width', 'height']]
            img_sizes = img_info_df[['width', 'height']].values
            self.img_infos = img_info_df.to_dict('records')
            self.img_ids = img_info_df.index.values.tolist()
            img_id_to_idx = {img_id: idx for idx, img_id in enumerate(self.img_ids)}
            return img_sizes, img_id_to_idx

        if self.include_masks and self.has_labels:
            masks_df = pd.read_csv(masks_filename)

            # NOTE currently using dataset masks anno ImageIDs to form valid img_ids from the dataset
            anno_img_ids = sorted(masks_df['ImageID'].unique())
            img_sizes, img_id_to_idx = _load_img_info(img_info_filename, select_img_ids=anno_img_ids)

            masks_df['ImageIdx'] = masks_df['ImageID'].map(img_id_to_idx)
            if np.issubdtype(masks_df.ImageIdx.dtype, np.floating):
                masks_df = masks_df.dropna(axis='rows')
                masks_df['ImageIdx'] = masks_df.ImageIdx.astype(np.int32)
            masks_df.sort_values('ImageIdx', inplace=True)
            ann_img_idx = masks_df['ImageIdx'].values
            img_sizes = img_sizes[ann_img_idx]
            masks_df['BoxXMin'] = masks_df['BoxXMin'] * img_sizes[:, 0]
            masks_df['BoxXMax'] = masks_df['BoxXMax'] * img_sizes[:, 0]
            masks_df['BoxYMin'] = masks_df['BoxYMin'] * img_sizes[:, 1]
            masks_df['BoxYMax'] = masks_df['BoxYMax'] * img_sizes[:, 1]
            masks_df['LabelIdx'] = masks_df['LabelName'].map(self.cat_id_to_label)
            # FIXME remap mask filename with _mask_filename

            self._anns = dict(
                bbox=masks_df[['BoxXMin', 'BoxYMin', 'BoxXMax', 'BoxYMax']].values.astype(np.float32),
                label=masks_df[['LabelIdx']].values.astype(np.int32),
                mask_path=masks_df[['MaskPath']].values
            )
            _, ri, rc = np.unique(ann_img_idx, return_index=True, return_counts=True)
            self._img_to_ann = list(zip(ri, rc))  # index, count tuples
        elif self.has_labels:
            _logger.info('Loading bbox...')
            bbox_df = pd.read_csv(bbox_filename)

            # NOTE currently using dataset box anno ImageIDs to form valid img_ids from the larger dataset.
            # FIXME use *imagelabels.csv or imagelabels-boxable.csv for negative examples (without box?)
            anno_img_ids = sorted(bbox_df['ImageID'].unique())
            img_sizes, img_id_to_idx = _load_img_info(img_info_filename, select_img_ids=anno_img_ids)

            _logger.info('Process bbox...')
            bbox_df['ImageIdx'] = bbox_df['ImageID'].map(img_id_to_idx)
            if np.issubdtype(bbox_df.ImageIdx.dtype, np.floating):
                bbox_df = bbox_df.dropna(axis='rows')
                bbox_df['ImageIdx'] = bbox_df.ImageIdx.astype(np.int32)
            bbox_df.sort_values('ImageIdx', inplace=True)
            ann_img_idx = bbox_df['ImageIdx'].values
            img_sizes = img_sizes[ann_img_idx]
            bbox_df['XMin'] = bbox_df['XMin'] * img_sizes[:, 0]
            bbox_df['XMax'] = bbox_df['XMax'] * img_sizes[:, 0]
            bbox_df['YMin'] = bbox_df['YMin'] * img_sizes[:, 1]
            bbox_df['YMax'] = bbox_df['YMax'] * img_sizes[:, 1]
            bbox_df['LabelIdx'] = bbox_df['LabelName'].map(self.cat_id_to_label).astype(np.int32)

            self._anns = dict(
                bbox=bbox_df[['XMin', 'YMin', 'XMax', 'YMax']].values.astype(np.float32),
                label=bbox_df[['LabelIdx', 'IsGroupOf']].values.astype(np.int32),
            )
            _, ri, rc = np.unique(ann_img_idx, return_index=True, return_counts=True)
            self._img_to_ann = list(zip(ri, rc))  # index, count tuples
        else:
            _load_img_info(img_info_filename)

        _logger.info('Annotations loaded!')

    def get_ann_info(self, idx):
        if not self.has_labels:
            return dict()
        start_idx, num_ann = self._img_to_ann[idx]
        ann_keys = tuple(self._anns.keys())
        ann_values = tuple(self._anns[k][start_idx:start_idx + num_ann] for k in ann_keys)
        return self._parse_ann_info(idx, ann_keys, ann_values)

    def _parse_ann_info(self, img_idx, ann_keys, ann_values):
        """
        """
        gt_bboxes = []
        gt_labels = []
        gt_bboxes_ignore = []
        if self.include_masks:
            assert 'mask_path' in ann_keys
            gt_masks = []

        for ann in zip(*ann_values):
            ann = dict(zip(ann_keys, ann))
            x1, y1, x2, y2 = ann['bbox']
            if x2 - x1 < 1 or y2 - y1 < 1:
                continue
            label = ann['label'][0]
            iscrowd = False
            if len(ann['label']) > 1:
                iscrowd = ann['label'][1]
            if self.yxyx:
                bbox = np.array([y1, x1, y2, x2], dtype=np.float32)
            else:
                bbox = ann['bbox']
            if iscrowd:
                gt_bboxes_ignore.append(bbox)
            else:
                gt_bboxes.append(bbox)
                gt_labels.append(label)
            # if self.include_masks:
            #     img_info = self.img_infos[img_idx]
            #     mask_img = SegmentationMask(ann['mask_filename'], img_info['width'], img_info['height'])
            #     gt_masks.append(mask_img)

        if gt_bboxes:
            gt_bboxes = np.array(gt_bboxes, ndmin=2, dtype=np.float32)
            gt_labels = np.array(gt_labels, dtype=np.int64)
        else:
            gt_bboxes = np.zeros((0, 4), dtype=np.float32)
            gt_labels = np.array([], dtype=np.int64)

        if self.include_bboxes_ignore:
            if gt_bboxes_ignore:
                gt_bboxes_ignore = np.array(gt_bboxes_ignore, ndmin=2, dtype=np.float32)
            else:
                gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

        ann = dict(bbox=gt_bboxes, cls=gt_labels)

        if self.include_bboxes_ignore:
            ann.update(dict(bbox_ignore=gt_bboxes_ignore, cls_ignore=np.array([], dtype=np.int64)))
        if self.include_masks:
            ann['masks'] = gt_masks
        return ann